APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (4): 327-336    DOI: 10.1007/s11770-009-0039-5
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Petrologic composition model of the upper crust in Bohai Bay basin, China, based on Lamé impedances
Zhang Xi1, Louisa L. H. Tsang2, Wang Yanghua2, and Zhao Bing1
1. State Key Laboratory of Lithospheric Evolution, CAS, Beijing 100029, China.
2. Centre for Reservoir Geophysics, Department of Earth Science and Engineering, Imperial College London, SW7 2BP, UK.
 Download: PDF (979 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Seismic attributes, such as P- and S-wave velocity, Poisson’s ratio, and acoustic impedances, all generally can be used for distinguishing different rock types. The non-uniqueness can be largely reduced using Lamé impedances instead of acoustic impedances as additional constraints. We have followed this method to constitute a petrologic composition model of the upper crust in the Bohai Bay basin, China. We briefly review the seismic parameters used for discrimination of rock types and focus our attention on the sensitivity of different combinations of parameters to determine the composition of materials. Corrections for pressure and temperature are performed in order to compare elastic wave velocities and densities measured at room temperature and surface pressure in laboratory with those for representative rock parameters. In a second step, we find the rock classes in the tested area by contrasting known data to laboratory measurements on a variety of rock samples extracted in the area. The basic field data are P-wave velocity values collected along a seismic profile conducted in the Bozhong Depression. The different rock types belonging to a particular rock class are finally constrained by the seismic velocities, Poisson’s ratio, density, acoustic impedance, and Lamé impedance related to the topmost 10 km of the Bohai Bay crust.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Xi
Louisa L. H. Tsang
WANG Yang-Hua
ZHAO Bing
Key wordsseismic velocity   Poisson’s ratio   acoustic and Lamé   impedances   Bohai Bay     
Received: 2009-10-29;
Fund:

This research was partially supported by the National Natural Science Foundation of China (Grant 20930140), the Chinese Academy of Sciences and the sponsors of the Centre for Reservoir Geophysics of the Imperial College.

Cite this article:   
ZHANG Xi,Louisa L. H. Tsang,WANG Yang-Hua et al. Petrologic composition model of the upper crust in Bohai Bay basin, China, based on Lamé impedances[J]. APPLIED GEOPHYSICS, 2009, 6(4): 327-336.
 
[1] Brown, D., Carbonell, R., Kukkonen, I., Ayala, C., and Golovanova, I., 2003, Composition of the Uralide crust from seismic velocity, heat flow, gravity and magnetic data: Earth Planet. Sci. Lett., 210, 333 - 349.
[2] Brocher, T. M., 2005, Empirical relations between elastic wavespeeds and density in the Earth’s crust: Bull. Seis. Soc. Amer., 95, 2081 - 2092, doi: 10.1785/0120050077.
[3] Chevrot, S., and van der Hilst, R. D., 2000, The Poisson’s ratio of the Australian crust: Geological and geophysical implications: Earth Planet. Sci. Lett., 183, 121 - 132.
[4] Christensen, N. I., 1979, Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients and crustal low-velocity zones: J. Geophys. Res., 84, 6849 - 6857.
[5] Christensen, N. I., 1996, Poisson’s ratio and crustal seismology: J. Geophys. Res., 101, 3139 - 3156.
[6] Christensen, N. I., and Mooney, W. D., 1995, Seismic velocity structure and composition of the continental crust: A global view: J. Geophys. Res., 100, 9761 - 9788.
[7] De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L., 2000, The Mahalanobis distance: Chemometrics and Intelligent Laboratory Systems, 50, 1 - 18.
[8] Dufour, J., Squires, J., Goodway, W. N., Edmunds, A., and Shook, I., 2002, Integrated geological and geophysical interpretation case study and Lamé rock parameter extractions using AVO analysis on the Blackfoot 3C-3D seismic data, southern Alberta, Canada: Geophysics, 67, 27 - 37.
[9] Egorkin, A. V., 1998, Velocity structure, composition and discrimination of crustal provinces in the former Soviet Union: Tectonophysics, 298, 395 - 404.
[10] Gardner, G., Gardner, L., and Gregory, A., 1974, Formation velocity and density-the diagnostic basics for stratigraphic traps: Geophysics, 39, 770 - 780.
[11] Holbrook, W. S., Lizarralde, D., McGeary, S., Bangs, N., and Diebold, J., 1999, Structure and composition of the Aleutian island arc and implications for continental crustal growth: Geology, 27, 31 - 34.
[12] Hu, S., Zhang, R., Luo, Y., and Cai, D., 2000, Basin thermal history and petroleum potential in Bohai Sea: China Offshore Oil and Gas (Geology), 14(5), 306 - 314.
[13] Kay, R. W., and Kay, S. M., 1985, Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc: Geology, 13, 461 - 464.
[14] Mahalanobis, P. C., 1936, On the generalised distance in statistics: Proceedings of the National Institute of Science of India, 12, 49 - 55.
[15] Mooney, W. D., and Brocher T. M., 1987, Coincident seismic reflection/refraction studies of the continental lithosphere: Global review: Rev. of Geophys., 25, 723 - 742.
[16] Rudnick, R. L., 1995, Making continental crust: Nature, 378, 571 - 578.
[17] Rudnick, R. L., and Fountain, D. M., 1995, Nature and composition of the continental crust: A lower crustal perspective: Rev. of Geophys. 33, 267 - 309.
[18] Sengor, A. M. C., and Natal’in, B. A., 1996, Turkic-type orogeny and its role in the making of the continental crust: Ann. Rev. Earth Planet. Sci., 24, 263 - 337.
[19] Sinvhal, A., and Khattri, K., 1983, Application of seismic reflection data to discriminate subsurface lithostratigraphy: Geophysics, 48, 1498 - 1513.
[20] Smithson, S. B., Johnson, R. A., and Wong, Y. K., 1981, Mean crustal velocity: a critical parameter for interpreting crustal structure and crustal growth: Earth Planet. Sci. Lett., 53, 323 - 332.
[21] Sobolov, S. V., and Babyenko, A., 1994, Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks: Surv. Geophys., 15, 515 - 544.
[22] Tarkov, A. P., and Vavakin, V. V., 1982, Poisson’s ratio behaviour in crystalline rocks: application to the study of the Earth’s interior: Phys. Earth Planet. Inter., 29, 24 - 29.
[23] Tatham, R. H., 1982, Vp/Vs and lithology: Geophysics, 47, 336 - 344.
[24] Tian, Z., and Zhang, Q., 1996, Oil-gas bearing basins in China: Beijing Petroleum Industry Press.
[25] Xiao, W., Wang, L., Li, H., Li, C., Wang, G., Cai, D., and Luo Y., 2001, Geotemperature field in Bohai Sea: China Offshore Oil and Gas (Geology), 15(2), 105 - 110.
[26] Zandt, G., and Ammon, C. J., 1995, Continental crust composition constrained by measurements of crustal Poisson’s ratio: Nature, 374, 152 - 154.
[27] Zhang, C., Zhang, X., Zhao, J., Ren, Q., Zhang, J., and Hai, Y., 2002, Study and review of crust-mantle velocity structure in Bohai Bay and its adjacent area: Acta Seismologica Sinica, 24, 428 - 435.
[28] Zhang, Z., Zhang, X., and Badal, J., 2008, Composition of the crust beneath southeastern China derived from an integrated geophysical dataset: J. Geophys. Res., 113, B04417, doi:10.1029/2006JB004503.
[29] Zhang, Z., Bai, Z., Mooney, W., Wang, C., Chen, X., Wang, E., Teng, J., and Okaya, N., 2009, Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data: Tectonophysics, doi:10.1016/j.tecto.2009.05.022.
[1] Liu Jie, Liu Jiang-Ping, Cheng Fei, Wang Jing, Liu Xiao-Xiao. Rock-physics models of hydrate-bearing sediments in permafrost, Qilian Mountains, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 31-39.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn