APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (4): 319-326    DOI: 10.1007/s11770-009-0036-8
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Linear numerical calculation method for obtaining critical point, pore fluid, and framework parameters of gas-bearing media
Niu Binhua1, Sun Chunyan1, Yan Guoying1, Yang Wei1, and Liu Chang1
1. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing, 100083, China.
 Download: PDF (308 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density ρ versus porosity φ, density times the square of compressional wave velocity ρVP2 versus porosity, and density times the square of shear wave velocity ρVS2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
NIU Bin-Hua
SUN Chun-Yan
YAN Guo-Ying
YANG Wei
LIU Chang
Key wordslinear equation   numerical calculation   gas-bearing media   critical point   pore fluid and framework   elastic parameters     
Received: 2009-07-10;
Fund:

The research is supported by the National Natural Science Foundation of China (Grant No. 40874052) and the Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education.

Cite this article:   
NIU Bin-Hua,SUN Chun-Yan,YAN Guo-Ying et al. Linear numerical calculation method for obtaining critical point, pore fluid, and framework parameters of gas-bearing media[J]. APPLIED GEOPHYSICS, 2009, 6(4): 319-326.
 
[1] Berge, P. A., Bonner, B. P., and Berryman, J. G., 1995, Ultrasonic velocity-porosity relationships for sandstone analogs made from fused glass beads: Geophysics, 60, 108 - 119.
[2] Chen, Q., and Nur, A., 1994, Critical concentration models for porous materials: in M. Yavuz Corapcioglu, Ed., Advances in porous media, Elsevier, Volume 2, New York.
[3] Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Cambridge University Press, New York.
[4] Nur, A., Mavko, G., Dvorkin, J., and Gal, D. 1995, Critical porosity, The key to relating physical properties to porosity in rocks: 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 878 - 881.
[5] Nur, A., Mavko, G., Dvorkin, J., and Galmudi, D., 1998, Critical porosity: A key to relating physical properties to porosity in rocks: The Leading Edge, 17, 357 - 362.
[1] Zong Zhao-Yun, Yin Xing-Yao, Li Kun. Joint AVO inversion in the time and frequency domain with Bayesian interference[J]. APPLIED GEOPHYSICS, 2016, 13(4): 631-640.
[2] Zhang Wen-Hui, Fu Li-Yun, Zhang Yan, Jin Wei-Jun. Computation of elastic properties of 3D digital cores from the Longmaxi shale[J]. APPLIED GEOPHYSICS, 2016, 13(2): 364-374.
[3] Zhu Chao, Guo Qing-Xin, Gong Qing-Shun, Liu Zhan-Guo, Li Sen-Ming, Huang Ge-Ping. Prestack forward modeling of tight reservoirs based on the Xu–White model[J]. APPLIED GEOPHYSICS, 2015, 12(3): 421-431.
[4] MA Ji-Qiang, GENG Jian-Hua. Cauchy prior distribution-based AVO elastic parameter estimation via weakly nonlinear waveform inversion[J]. APPLIED GEOPHYSICS, 2013, 10(4): 442-452.
[5] HUANG Han-Dong, ZHANG Ru-Wei, SHEN Guo-Qiang, GUO Fei, WANG Jia-Bei. Study of prestack elastic parameter consistency inversion methods[J]. APPLIED GEOPHYSICS, 2011, 8(4): 311-318.
[6] HE Fu-Bang, YOU Jun, CHEN Kai-Yuan. Gas sand distribution prediction by prestack elastic inversion based on rock physics modeling and analysis[J]. APPLIED GEOPHYSICS, 2011, 8(3): 197-205.
[7] PEI Fa-Gen, ZOU Chang-Chun, HE Tao, SHI Ge, CHOU Gen-Gen, REN Ke-Ying. Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks[J]. APPLIED GEOPHYSICS, 2010, 7(1): 1-9.
[8] PEI Fa-Gen, ZOU Chang-Chun, HE Tao, SHI Ge, CHOU Gen-Gen, REN Ke-Ying. Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks[J]. APPLIED GEOPHYSICS, 2010, 6(1): 1-9.
[9] CHEN Shuang-Quan, WANG Shang-Xu, ZHANG Yong-Gang, JI Min. Reservoir prediction using pre-stack inverted elastic parameters[J]. APPLIED GEOPHYSICS, 2009, 6(4): 375-384.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn