APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (2): 223-234    DOI: 10.1007/s11770-014-0439-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
3D laterolog array sonde design and response simulation
Yin Cheng-Fang1,2, Ke Shi-Zhen1,2, Xu Wei1,2, Jiang Ming1,2, Zhang Lei-Jie1,2, and Tao Jie1,2
1. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
2. Key Laboratory of Earth Prospecting and Information Technology, Beijing 102249, China.
 Download: PDF (1325 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract A new three-dimensional laterolog array sonde (3D-LS) is presented. The 3D-LS is based on existing high-resolution laterolog array and azimuthal resistivity imaging sondes with radial, longitudinal, and circumferential detection abilities. Six investigation modes are designed using the 3D finite-element method and different investigation depths are simulated based on the pseudo-geometrical factor of the six modes. The invasion profile is described using multi-array radial logs. From the analysis of the pseudo-geometrical factor, the investigation depth of the 3D-LS is about 1.5 m for conductive invasion, which is close to that of the dual laterolog tool but greater than that of the highly integrated azimuthal laterolog sonde. The vertical and azimuthal resolution is also analyzed with the same method. The 3D-LS can detect low-resistivity anomalies of 0.5 m thickness and 15? around the borehole for infinitely thick formations. This study lays the foundation for more work on 3D laterolog array sonde for evaluating low-resistivity anomalies.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YIN Cheng-Fang
KE Shi-Zhen
XU Wei
JIANG Ming
ZHANG Lei-Jie
TAO Jie
Key wordsThree-dimensional laterolog   sonde   numerical modeling   FEM   detectivity   low-resistivity     
Received: 2014-01-22;
Fund:

This project is sponsored by the National Oil and Gas Major Projects (No. 2011ZX05020-009).

Cite this article:   
YIN Cheng-Fang,KE Shi-Zhen,XU Wei et al. 3D laterolog array sonde design and response simulation[J]. APPLIED GEOPHYSICS, 2014, 11(2): 223-234.
 
[1] Coggon, J. H., 1971, Electromagnetic and electrical modeling by the finite element method: Geophysics, 36(1), 132-155.
[2] Davies, D. H., Ollivier, F., Gounot, M. T., Seeman, B., Trouiller, J. C., Dominique, B., Ferreira, A., Pittman, D. J., Mahaly Randrianavony, Smits, J. W., Anderson, B. I., and Lovell, J., 1994, Azimuthal resistivity imaging: anew-generation laterolog: SPE Formation Evaluation, 165-174.
[3] Fan, Y. R., Jiang, J. L., Deng, S. G., and Chen, H., 2009, Numerical simulation of high resolution array lateral logging responses: Well Logging Technology, 33(4), 333-336.
[4] Feng, L. W., Tang, T. Z., He, F., Xu, Y., Sun, J. J., and He, X. Z., 2013, On the response characteristics of high resolution Dual Laterolog and common Dual Laterolog: Well Logging Technology, 37(5), 481-486.
[5] He, F., Ma, X., Feng, L. W., Li, Q., Cao, J. Z, and Liu, W., 2013, HAL6505 array laterolog tool: Oil Furum, (2), 59-62.
[6] Huang, J. Z., Zhu, J., Li, M. X., and Wang, Z., 2001, A new azimuthal resistivity imaging tool: China Patent, CN00226552.4.
[7] Itskovich, G. B., Mezzatesta, A. G., Strack, K. M., and Tabarovsky, L. A., 1998, High-definition Lateral Log-resisitivity device: basic physics and resolution: SPWLA 39th Annual Logging Symposium, 1-12.
[8] Li, D. Q., 1984, The application of finite-element method in electric well logging: Petroleum Industry Press, Beijing.
[9] Li, Z. Q., Yang, Z. Q, Wang, J. J, Yang, C., Yang, Y. J., Ju, C., Huang, Y., Zheng, J. X., Zhao, L. X., and Ji, X. F., 2012, A high resolution azimuthal resistivity laterolog tool and logging method: China Patent, CN201210233337.8.
[10] Li, Z. Q., Yang, Z. Q, Wang, J. J, Yang, C., Yang, Y. J., Ju, C., Huang, Y., Zheng, J. X., Zhao, L. X., and Ji, X. F., 2013, High-resolution azimuthal resistivity laterolog tool: China Patent, CN201220326167.3.
[11] Liu, D. J., Ma, Z. H., Xing, X. N., Li, H., and Guo, Z. Y., 2013, Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM: Applied Geophysics, 10(1), 97-108.
[12] Schlumberger, 2013, Log Interpretation charts.
[13] Scholberg, A. 1973, Apparatus for determing the resistivity of a subsurface earth formation at different lateral distances from a borehole wall: US Patent, 3772589.
[14] Sheng, J. G., 1984, Numerical analysis for electromagnetic fields: Science Press, Beijing.
[15] Smits, J. W., Benimelli, D., Dubourg, I., Faivre, O., Hoyle, D., Tourillon, V., Trouiller, J-C., and Anderson, B. I., 1995, High resolution from a new laterolog with azimuthal imaging: 70th SPE Annual Technical Conference and Exhibition, SPE 30584, 563-575.
[16] Smits, J. W., Dubourg, I., Lüling, M. G., Minerbo, G. N., Koelman, J. M. V. A., Hoffman, L. J. B., Lomas, A. T., Oosten, R. K. v. d., Schiet, M. J., and Dennis, R. N., 1998, Improved resistivity interpretation utilizing a new array laterolog tool and associated inversion processing: 73th SPE Annual Technical Conference and Exhibition, SPE 49328, 831-844.
[17] Suau, J., Grimaldi, P., Poupon, A., and Souhaite, P., 1972, The dual laterolog-Rxo Tool: Fall Meeting of the Society of Petroleum Engineers of AIME, SPE 4018, 1-44.
[18] Wang, X., Chen, H., and Wang, X. M., 2012, Dual laterolog borehole correction based on dynamic tool constants: Applied Geophysics, 9(4), 414-420.
[19] Wu, J., Xie, W. W., Xie, X. C., Zhang, J., and Xu, X. Q., 2008, Forward response analysis of array lateral logging tool: Journal of Xi’an Shiyou University (Natural Science Edition), 23(1), 73-80.
[20] Yang, W., 2002, ARI log responses to 3D anisotropic formations: Well Logging Technology, 26(1), 30-34.
[21] Yang, W., and Tao, G., 1999, Forward and inversion of azimuthal lateral resistivity logs: 69th SEG Annual Meeting, expanded abstract, 1-4.
[22] Yan, Z. W., 2006, ANSYS10.0 engineering electroma-gnetic analysis technology and example explanation: China Water Power Press, Beijing.
[23] Zeng, Y. G., Xu, G. H., and Song, G. X., 1982, Electromagnetic field finite element method: Science Press, Beijing.
[24] Zhang, G. J., 1986, Electrical logging: Petroleum Industry Press, Beijing.
[25] Zhu, J., and Feng, L. W., 2007, Analysis on numeric simulation of high-resolution dual laterolog (DLL) response: Oil Geophysical Prospecting, 42(4), 457-462.
[26] Zhu, J., Feng, L. W., Li, J. H., Zhao, Y. Z., and Wang, J. N., 2007, A new high resolution dual laterolog logging method: Well Logging Technology, 31(2), 118-123.
[1] Hu Jun, Cao Jun-Xing, He Xiao-Yan, Wang Quan-Feng, and Xu Bin. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 367-381.
[2] Kang Zheng-Ming, Ke Shi-Zhen, Li Xin, Mi Jin-Tai, Ni Wei-Ning, and Li Ming. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 401-412.
[3] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[4] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[5] Hu Song, Li Jun, Guo Hong-Bo, Wang Chang-Xue. Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well[J]. APPLIED GEOPHYSICS, 2017, 14(3): 351-362.
[6] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[7] Yang Si-Tong, Wei Jiu-Chuan, Cheng Jiu-Long, Shi Long-Qing, Wen Zhi-Jie. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models[J]. APPLIED GEOPHYSICS, 2016, 13(4): 621-630.
[8] Fu Bo-Ye, Fu Li-Yun, Wei Wei, Zhang Yan. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments[J]. APPLIED GEOPHYSICS, 2016, 13(4): 667-682.
[9] Tao Bei, Chen De-Hua, He Xiao, Wang Xiu-Ming. Rough interfaces and ultrasonic imaging logging behind casing[J]. APPLIED GEOPHYSICS, 2016, 13(4): 683-688.
[10] Chang Jiang-Hao, Yu Jing-Cun, Liu Zhi-Xin. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. APPLIED GEOPHYSICS, 2016, 13(3): 539-552.
[11] Zhang Qian-Jiang, Dai Shi-Kun, Chen Long-Wei, Qiang Jian-Ke, Li Kun, Zhao Dong-Dong. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement[J]. APPLIED GEOPHYSICS, 2016, 13(2): 257-266.
[12] Hu Ying-Cai, Li Tong-Lin, Fan Cui-Song, Wang Da-Yong, Li Jian-Ping. Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 35-46.
[13] Liu Yang, Li Xiang-Yang, Chen Shuang-Quan. Application of the double absorbing boundary condition in seismic modeling[J]. APPLIED GEOPHYSICS, 2015, 12(1): 111-119.
[14] Cho , Kwang-Hyun . Discriminating between explosions and earthquakes[J]. APPLIED GEOPHYSICS, 2014, 11(4): 429-436.
[15] HE Yi-Yuan, ZHANG Bao-Ping, DUAN Yu-Ting, XUE Cheng-Jin, YAN Xin, HE Chuan, HU Tian-Yue. Numerical simulation of surface and downhole deformation induced by hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2014, 11(1): 63-72.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn