APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (2): 235-244    DOI: 10.1007/s11770-014-0416-6
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Interval Q inversion based on zero-offset VSP data and applications
Zhang Gu-Lan1,2, Wang Xi-Ming2, He Zhen-Hua1, Cao Jun-Xing1, Li Ke-En3, and Rong Jiao-Jun2
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, 610059, China.
2. BGP, CNPC, Zhuozhou 072751, China.
3. Hunan?Huasheng?Energy?Investment?and?Development?Co.?Ltd., Changsha 410000, China.
 Download: PDF (1568 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Gu-Lan
WANG Xi-Ming
HE Zhen-Hua
CAO Jun-Xing
LI Ke-恩
RONG Jiao-Jun
Key wordsinterval Q inversion   zero-offset VSP   improved method   amplitude spectral fitting   spectral ratio   inverse Q filtering     
Received: 2013-07-22;
Fund:

This work was sponsored by the National Nature Science Foundation of China (Nos. 41174114 and 41274128).

Cite this article:   
ZHANG Gu-Lan,WANG Xi-Ming,HE Zhen-Hua et al. Interval Q inversion based on zero-offset VSP data and applications[J]. APPLIED GEOPHYSICS, 2014, 11(2): 235-244.
 
[1] Badri, M., and Mooney, H. M., 1987, Q measurements from compressional seismic waves in unconsolidated sediments: Geophysics, 52, 772 - 784.
[2] Bano, M., 1996, Q-phase compensation of seismic records in the frequency domain: Bulletin of the Seismological Society of America, 86, 1179 - 1186.
[3] Blias, E., 2012, Accurate interval Q-factor estimation from VSP data: Geophysics, 77, 149 - 156.
[4] Chen, S. Q., and Li, X. Y., 2012, Application of improving surface seismic resolution using vertical seismic profile data: Journal of China University of Petroleum, 36, 65 - 68.
[5] Fu, X. X., Xu, F., Qing, Q. R., et al., 2012, Estimation of quality factor based on improved generalized S-transform: OGP, 47, 457 - 461.
[6] Hatherly, P. J., 1986, Attenuation measurements on shallow seismic refraction data: Geophysics, 51, 250 - 254.
[7] Hale, D., 1981, Q and adaptive prediction error filters. Stanford Exploration Project Report, 28, 209 - 231.
[8] Hamilton, E. L., 1972, Compressional-wave attenuation in marine sediments: Geophysics, 37, 620 - 646.
[9] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56, 519 - 527
[10] Hauge, P. S., 1981, Measurements of attenuation from vertical seismic profiles: Geophysics, 46, 1548 - 1558.
[11] Hosken, J., 1988, Ricker wavelets in their various guises. First Break, 6, 24 - 33.
[12] Schoenberger, M., and Levin, F. K., 1974, Apparent attenuation due to intrabed multiples: Geophysics, 9, 278 - 291.
[13] Spencer, T. W., Edwards, C. M., and Sonnad, J. R., 1977, Seismic wave attenuation in non resolvable cyclic stratification: Geophysics, 42, 939 - 949.
[14] Spencer, T. W., Sonnad, J. R., and Butler, M., 1982, Seismic Q-stratigraphy or dissipation: Geophysics, 47, 16-24.
[15] Stainsby, S. D., and Worthington, M. H., 1985, Q estimation from vertical seismic profile data and anomalous variations in the central North Sea: Geophysics, 50, 615 - 626.
[16] Tonn, R., 1989, Comparison of seven methods for the computation of Q: Physics of the Earth and Planetary Interiors, 55, 259 - 268.
[17] Tonn, R., 1991, The determination of the seismic quality factor Q from VSP data: A comparison of different computational methods: Geophysical Prospecting, 39, 1 - 27.
[18] Wang, X. J., Yin, X. Y., 2011, Estimation of layer quality factors based on zero-phase wavelet: Progress in Geophys.(in Chinese), 26, 2090 - 2098.
[19] Wang, Y. H., 2002, A stable and efficient approach of inverse Q filtering: Geophysics, 67, 657 - 663.
[20] Wang, Y. H., 2003, Quantifying the effectiveness of stabilized inverse Q-filtering: Geophysics, 68, 337 - 345.
[21] Wang, Y. H., 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71, 51 - 60.
[22] Yan, H. Y., and Liu, Y., 2009, Estimation of Q and inverse Q filtering for prestack reflected PP-and converted PS-waves: Applied Geophysics, 6, 59 - 69.
[23] Yan, H. Y., and Liu, Y., 2011, A method for improving VSP resolution by inverse Q filtering. OGP, 46, 873 - 880.
[24] Yu, S. P., 1996, Wide-band Ricker wavelet: OGP, 31, 605 - 615.
[25] Zhang, D. W., Sun, Z. D., Wang, X. J., et al., 2011, Q-factor inversion and calculation using zero-offset VSP data: OGP, 46 (Supplement 1), 47 - 52.
[26] Zhao, J., Gao, J. H., Wang, D. X., et al., 2013, Estimation of quality factor Q from pre-stack CMP records: Chinese J.Geophys.(in Chinese), 56, 2413 - 2428.
[1] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[2] Li Guo-Fa, Zheng Hao, Zhu Wen-Liang, Wang Ming-Chao, Di Tong-Li. Tomographic inversion of near-surface Q factor by combining surface and cross-hole seismic surveys[J]. APPLIED GEOPHYSICS, 2016, 13(1): 93-102.
[3] Wang Zong-Jun, Cao Si-Yuan, Zhang Hao-Ran, Qu Ying-Ming, Yuan Dian, Yang Jin-Hao, Zhang De-Long, Shao Guan-Ming. Estimation of quality factors by energy ratio method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 86-92.
[4] LIU Jiong, WEI Xiu-Cheng, JI Yu-Xin, CHEN Tian-Sheng, LIU Chun-Yuan, ZHANG Chun-Tao, DAI Ming-Gang. An analysis of seismic scattering attenuation in a random elastic medium[J]. APPLIED GEOPHYSICS, 2011, 8(4): 344-354.
[5] WANG Shou-Dong. Attenuation compensation method based on inversion[J]. APPLIED GEOPHYSICS, 2011, 8(2): 150-157.
[6] YUAN San-Yi, WANG Shang-Xu, TIAN Nan. Swarm intelligence optimization and its application in geophysical data inversion[J]. APPLIED GEOPHYSICS, 2009, 6(2): 166-174.
[7] YAN Hong-Yong, LIU Yang. Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves[J]. APPLIED GEOPHYSICS, 2009, 6(1): 59-69.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn