APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (1): 42-49    DOI: 10.1007/s11770-009-0008-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme
Du Qi-Zhen1,2, Li Bin1,2, and Hou Bo1,2
1. School of Earth Resource and information, China University of petroleum (East China), Dongying 257061, China.
2. CNPC Key Laboratory of Geophysical Exploration, China University of petroleum (Beijing), Beijing 102202, China.
 Download: PDF (623 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract To deal with the numerical dispersion problem, by combining the staggered-grid technology with the compact finite difference scheme, we derive a compact staggered-grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
DU Qi-Zhen
LI Bin
HOU Bo
Key wordstransversely isotropic medium   compact staggered-grid   the first-order velocity-stress wave equations   numerical dispersion   wave field simulation     
Received: 2008-07-26;
Fund:

This work is supported by the National High-Tech Research and Development Program of China (Grant No. 2006AA06Z202), the Open Fund of the Key Laboratory of Geophysical Exploration of CNPC (Grant No. GPKL0802) and the Graduate Student Innovation Fund of China University of Petroleum (East China) (Grant No. S2008-1), and the Program for New Century Excellent Talents in University (Grant No .NCET-07-0845).

Cite this article:   
DU Qi-Zhen,LI Bin,HOU Bo. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme[J]. APPLIED GEOPHYSICS, 2009, 6(1): 42-49.
 
[1] Bendiks, 2005, A staggered compact finite difference formulation for the compressible Navier-Stokes equations: J. Comput. Phys., 208, 675 - 690.
[2] Crase, E., 1990, High-order (space and time) finite-difference and modeling of elastic wave equa-tion: 60th Ann. Internat. Mtg., Soc. Explor. Geophys., Expand Abstracts, 987 - 991.
[3] Dong, L. G., Ma, Z. T., and Cao, J. Z., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics (in Chinese), 43(3), 410 - 415.
[4] Lele, S. K., 1992, Compact finite difference schemes with spectral-like resolution: J. Comput. Phys., 103, 16 - 19.
[5] Levander, A. R., 1988, Four-order finite-difference P-SV seismograms: Geophysics, 53(1), 1425 - 1436.
[6] Liu, Q. S., Shen, M. Y., and Liu, Y., 1996, New numerical method for general boundary value problems of ordinary differential equations: Journal of Tsinghua University (Science & Technology) (in Chinese), 36(4), 7 - 12.
[7] Liu, Y., and Wei, X. C., 2008, Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media: Applied Geophysics, 5(2), 107 - 114.
[8] Ma, Y. W., and Fu, D. X., 1996, Direct numerical simulation of plane mixed flow reverse structure: Science in China (Series A) (in Chinese), 26(7), 657 - 663.
[9] Madariaga, R., 1976, Dynamics of an expanding circular fault: BSSA, 66(3), 639 - 666.
[10] Nagarajan, S., Lele, S. K., and Ferziger, J. H., 2003, A robust high-order compact method for large eddy simulation: J. Comput. Phys., 191, 392 - 419.
[11] Shen, M. Y., and Niu, X. L., 2003, The optimized three-point fifth-order accurate generalized compact scheme: Acta Aerodynamica Sinica (in Chinese), 21(4), 383 - 390.
[12] Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite difference method: Geophysics, 49(11), 1933 - 1941.
[13] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method: Geophysics, 51(4), 889 - 893.
[14] Wang, S. Q., Yang, D. H., and Yang, D. K., 2002, Compact finite difference scheme for elastic equation: Journal of Tsinghua University (Science & Technology) (in Chinese), 42(8), 1128 - 1131.
[15] Wang, Z. J., He, Q. D., and Wang, D. L., 2008, The numerical simulation for a 3D two-phase anisotropic media based on BISQ model: Applied Geophysics, 5(1), 24 - 34.
[16] Wu, G. C., and Wang, H. Z., 2005, Analysis of numerical dispersion in wave-field simulation: Progress in Geophysics (in Chinese), 20(1), 58 - 65.
[17] Zhang, W. S., 2006, Finite difference methods for partial differential equations in science computation: Higher Education Press, Beijing, 61 - 66.
[1] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[2] ZHANG Chao-Yuan, MA Xiao, YANG Lei, SONG Guo-Jie. Symplectic partitioned Runge–Kutta method based on the eighth-order nearly analytic discrete operator and its wavefield simulations[J]. APPLIED GEOPHYSICS, 2014, 11(1): 89-106.
[3] YANG Hao-Xing, WANG Hong-Xia. A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves[J]. APPLIED GEOPHYSICS, 2013, 10(1): 63-70.
[4] TIAN Ying-Chun, MA Jian-Wei, YANG Hui-Zhu. Wavefield simulation in porous media saturated with two immiscible fluids[J]. APPLIED GEOPHYSICS, 2010, 7(1): 57-65.
[5] TIAN Ying-Chun, MA Jian-Wei, YANG Hui-Zhu. Wavefield simulation in porous media saturated with two immiscible fluids[J]. APPLIED GEOPHYSICS, 2010, 6(1): 57-65.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn