Abstract Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
Keywords: finite difference|finite element|modeling|arbitrary precise integration
This research is supported by the Natural Science Foundation of China (Grant No. 40574050, 40821062), the National Basic Research Program of China (Grant No. 2007CB209602), and the Key Research Program of China National Petroleum Corporation (Grant No. 06A10101).
Cite this article:
YANG Jin-Hua,LIU Tao,TANG Gen-Yang et al. Modeling seismic wave propagation within complex structures[J]. APPLIED GEOPHYSICS, 2009, 6(1): 30-41.
[1]
Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation: Geophysics, 39(6), 834 - 842.
[2]
Carcione, J. M., Herman, G. C., and ten Kroode, A. P. E., 2002, Seismic modeling: Geophysics, 67(4), 1304 - 1325.
Coates, R. T., and Schoenberg, M., 1995, Finite-difference modeling of faults and fractures: Geophysics, 60(5), 1514 - 1526.
[5]
Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[6]
Dong, Y., and Yang, H. Z., 2001, Solution of 2-d wave reverse-time propagation problem by the finite element-finite difference method: Theoretical and Computational Acoustics:,World Scientific Press, Singapore.
[7]
Du, X., and Bancroft, J. C., 2004, 2-D wave equation modeling and migration by a new finite difference scheme based on the Galerkin method: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts., 1107 - 1110.
[8]
Ekren, B. O., and Ursin, B., 1999, True-amplitude frequency-wave number constant-offset migration: Geophysics, 61(3), 915 - 924.
[9]
Hestholm, S., Moran, M., Ketcham, S., Anderson, T., Dillen, M., and McMechan, G., 2006, Effects of free-surface topography on moving-seismic-source modeling: Geophysics, 71(6), T159 - T166.
[10]
Komatictsch, D., and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophys. J. Int., 124, 146-153.
[11]
Li, G. F., and Peng, S. P., 2008, Static corrections for low S/N ratio converted-wave seismic data: Applied Geophysics, 5(1), 44 - 49.
[12]
Li, J. F., and Zhao, Q., 2006, Figures of seismic physical modeling for oil and gas exploration: China Petroleum Industry Press, Beijing.
[13]
Lines, L. R., Slawinski, R., and Bording, R. P., 1999, A recipe for stability of finite-difference wave-equation computations: Geophysics, 64(3), 967 - 979.
[14]
Liu, T., Hu, T. Y., and Yang, J. H., 2008, Finite element-finite difference method in 2-D seismic modeling: 70th EAGE Conference, Extended Abstracts, Rome, P054.
[15]
Ma, S., Archuleta, R. J., and Liu, P., 2004, Hybrid modeling of elastic P-SV wave motion: A combined finite-element and staggered-grid finite-difference approach: Bulletin of the Seismological Society of America, 94(4), 1557 - 1563.
[16]
Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49(5), 533 - 549.
[17]
Moubarak, H., Bancroft, J., Lawton, D., Isaac, H., Mewhort, L., Emery, D., and Scott, B., 2007, A modeling study for imaging in structurally complex media: case history: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2002 - 2005
[18]
Oliveira, S. A. M., 2003, A fourth-order finite-difference method for the acoustic wave equation on irregular grids: Geophysics, 68(2), 672 - 676.
[19]
Tang, G. Y., Hu, T. Y. and Yang, J. H., 2007, Applications of a precise integration method in forward seismic modeling: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2130 - 2133.
[20]
Tessmer, E., 2000, Seismic finite-difference modeling with spatially varying time steps: Geophysics, 65(4), 1290 - 1293.
[21]
Thore, P., 2006, Accuracy and limitation in seismic modeling of reservoir: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1674-1677
[22]
van der Neut, J., Sen, M. K., and Wapenaar, K., 2008, Seismic reflection coefficients of faults at low frequencies: a model study: Geophysical Prospecting, 56(3), 287 - 292.
[23]
van Vossen, R., and Trampert, J., 2007, Full-waveform static correction using blind channel identification: Geophysics, 72(4), U55 - U66.
[24]
Wang, X. C., and Liu, X. W., 2007, 3-D acoustic wave equation forward modeling with topography: Applied Geophysics, 4(1), 8 - 15.
[25]
Wang, R. Q., Jia, X. F., and Hu, T. Y., 2004, The precise finite difference method for seismic modeling: Applied Geophysics, 1(2), 69 - 74.
[26]
Xu, Y. X., Xia, J. H., and Miller, R. D., 2007, Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach: Geophysics, 72(5), SM147 - SM153.
[27]
Yoon, K, Marfurt, K. J., and Starr, W., 2004. Challenges in reverse-time migration: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1057 - 1060.
[28]
Zhang, J., and Liu, T. L., 2002, Elastic wave modeling in 3D heterogeneous media: Geophysical Journal International, 150(3), 780 - 799.
[29]
Zhang, W., and Chen, X., 2006, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation: Geophysical Journal International, 167, 337 - 353.