APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (1): 30-41    DOI: 10.1007/s11770-009-0005-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Modeling seismic wave propagation within complex structures
Yang Jinhua1, Liu Tao1, Tang Genyang1, and Hu Tianyue1
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
 Download: PDF (2370 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
Keywords: finite difference|finite element|modeling|arbitrary precise integration
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Jin-Hua
LIU Tao
TANG Gen-Yang
HU Tian-Yue
Key wordsfinite difference   finite element   modeling   arbitrary precise integration     
Received: 2008-08-31;
Fund:

This research is supported by the Natural Science Foundation of China (Grant No. 40574050, 40821062), the National Basic Research Program of China (Grant No. 2007CB209602), and the Key Research Program of China National Petroleum Corporation (Grant No. 06A10101).

Cite this article:   
YANG Jin-Hua,LIU Tao,TANG Gen-Yang et al. Modeling seismic wave propagation within complex structures[J]. APPLIED GEOPHYSICS, 2009, 6(1): 30-41.
 
[1] Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation: Geophysics, 39(6), 834 - 842.
[2] Carcione, J. M., Herman, G. C., and ten Kroode, A. P. E., 2002, Seismic modeling: Geophysics, 67(4), 1304 - 1325.
[3] Chang, X., Liu, Y., Wang, H., and Li, F., 2002, 3-D tomographic static correction: Geophysics, 67(4), 1275 - 1285.
[4] Coates, R. T., and Schoenberg, M., 1995, Finite-difference modeling of faults and fractures: Geophysics, 60(5), 1514 - 1526.
[5] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[6] Dong, Y., and Yang, H. Z., 2001, Solution of 2-d wave reverse-time propagation problem by the finite element-finite difference method: Theoretical and Computational Acoustics:,World Scientific Press, Singapore.
[7] Du, X., and Bancroft, J. C., 2004, 2-D wave equation modeling and migration by a new finite difference scheme based on the Galerkin method: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts., 1107 - 1110.
[8] Ekren, B. O., and Ursin, B., 1999, True-amplitude frequency-wave number constant-offset migration: Geophysics, 61(3), 915 - 924.
[9] Hestholm, S., Moran, M., Ketcham, S., Anderson, T., Dillen, M., and McMechan, G., 2006, Effects of free-surface topography on moving-seismic-source modeling: Geophysics, 71(6), T159 - T166.
[10] Komatictsch, D., and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophys. J. Int., 124, 146-153.
[11] Li, G. F., and Peng, S. P., 2008, Static corrections for low S/N ratio converted-wave seismic data: Applied Geophysics, 5(1), 44 - 49.
[12] Li, J. F., and Zhao, Q., 2006, Figures of seismic physical modeling for oil and gas exploration: China Petroleum Industry Press, Beijing.
[13] Lines, L. R., Slawinski, R., and Bording, R. P., 1999, A recipe for stability of finite-difference wave-equation computations: Geophysics, 64(3), 967 - 979.
[14] Liu, T., Hu, T. Y., and Yang, J. H., 2008, Finite element-finite difference method in 2-D seismic modeling: 70th EAGE Conference, Extended Abstracts, Rome, P054.
[15] Ma, S., Archuleta, R. J., and Liu, P., 2004, Hybrid modeling of elastic P-SV wave motion: A combined finite-element and staggered-grid finite-difference approach: Bulletin of the Seismological Society of America, 94(4), 1557 - 1563.
[16] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49(5), 533 - 549.
[17] Moubarak, H., Bancroft, J., Lawton, D., Isaac, H., Mewhort, L., Emery, D., and Scott, B., 2007, A modeling study for imaging in structurally complex media: case history: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2002 - 2005
[18] Oliveira, S. A. M., 2003, A fourth-order finite-difference method for the acoustic wave equation on irregular grids: Geophysics, 68(2), 672 - 676.
[19] Tang, G. Y., Hu, T. Y. and Yang, J. H., 2007, Applications of a precise integration method in forward seismic modeling: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2130 - 2133.
[20] Tessmer, E., 2000, Seismic finite-difference modeling with spatially varying time steps: Geophysics, 65(4), 1290 - 1293.
[21] Thore, P., 2006, Accuracy and limitation in seismic modeling of reservoir: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1674-1677
[22] van der Neut, J., Sen, M. K., and Wapenaar, K., 2008, Seismic reflection coefficients of faults at low frequencies: a model study: Geophysical Prospecting, 56(3), 287 - 292.
[23] van Vossen, R., and Trampert, J., 2007, Full-waveform static correction using blind channel identification: Geophysics, 72(4), U55 - U66.
[24] Wang, X. C., and Liu, X. W., 2007, 3-D acoustic wave equation forward modeling with topography: Applied Geophysics, 4(1), 8 - 15.
[25] Wang, R. Q., Jia, X. F., and Hu, T. Y., 2004, The precise finite difference method for seismic modeling: Applied Geophysics, 1(2), 69 - 74.
[26] Xu, Y. X., Xia, J. H., and Miller, R. D., 2007, Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach: Geophysics, 72(5), SM147 - SM153.
[27] Yoon, K, Marfurt, K. J., and Starr, W., 2004. Challenges in reverse-time migration: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1057 - 1060.
[28] Zhang, J., and Liu, T. L., 2002, Elastic wave modeling in 3D heterogeneous media: Geophysical Journal International, 150(3), 780 - 799.
[29] Zhang, W., and Chen, X., 2006, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation: Geophysical Journal International, 167, 337 - 353.
[1] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[2] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[3] Li Kun, Chen Long-Wei, Chen Qing-Rui, Dai Shi-Kun, Zhang Qian-Jiang, Zhao Dong-Dong, and Ling Jia-Xuan. Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 500-512.
[4] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[5] Zhou Feng, Tang Jing-Tian, Ren Zheng-Yong, Zhang Zhi-Yong, Chen Huang, Huang Xiang-Yu, and Zhong Yi-Yuan. A hybrid finite-element and integral-equation method for forward modeling of 3D controlled-source electromagnetic induction[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 536-544.
[6] Kang Zheng-Ming, Ke Shi-Zhen, Li Xin, Mi Jin-Tai, Ni Wei-Ning, and Li Ming. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 401-412.
[7] Cheng Jing-Wang, Fan Na, Zhang You-Yuan, and Lü Xiao-Chun. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
[8] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[9] Cao Xue-Shen Chen Hao, Li Ping, He Hong-Bin, Zhou Yin-Qiu, and Wang Xiu-Ming. Wideband dipole logging based on segment linear frequency modulation excitation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 197-207.
[10] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[11] Xu Kai-Jun and Sun Jie. Induced polarization in a 2.5D marine controlled-source electromagnetic field based on the adaptive finite-element method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 332-341.
[12] Zhang Bo, Yin Chang-Chun, Liu Yun-He, Ren Xiu-Yan, Qi Yan-Fu, Cai Jing. 3D forward modeling and response analysis for marine CSEMs towed by two ships[J]. APPLIED GEOPHYSICS, 2018, 15(1): 11-25.
[13] Wang Bing, Kuo Zhang, Guo Tao, He Liu, Zhang Xiao-Liang. Acoustic reflection well logging modeling using the frequency-domain finite-element method with a hybrid PML[J]. APPLIED GEOPHYSICS, 2018, 15(1): 35-45.
[14] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[15] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn