APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (1): 53-62    DOI: 10.1007/s11770-013-0342-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
A truncated implicit high-order finite-difference scheme combined with boundary conditions
Chang Suo-Liang1,2,3 and Liu Yang1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 100083, China.
2. Taiyuan University of Technology, Taiyuan 030024, China.
3. Shanxi Shandi Geophy-Tech Co. Ltd, Jinzhong, 030600, China.
 Download: PDF (770 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In this paper, first we calculate finite-difference coefficients of implicit finite-difference methods (IFDM) for the first- and second-order derivatives on normal grids and first-order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirror-image symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHANG Suo-Liang
LIU Yang
Key wordsImplicit finite difference   symmetric boundary condition   high-order accuracy   truncation   absorbing boundary condition   staggered grid   numerical modeling     
Received: 2012-04-11;
Fund:

This research is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 41074100) and the Program for New Century Excellent Talents in University of Ministry of Education of  China (Grant No. NCET-10-0812).

Cite this article:   
CHANG Suo-Liang,LIU Yang. A truncated implicit high-order finite-difference scheme combined with boundary conditions[J]. APPLIED GEOPHYSICS, 2013, 10(1): 53-62.
 
[1] Bohlen, T., and Saenger, E. H., 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves: Geophysics, 71, T109 - T115.
[2] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics, 51, 54 - 66.
[3] Dong, L., Ma, Z., Cao, J., Wang, H., Geng, J., Lei, B., and Xu, S., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics, 43, 411 - 419.
[4] Du, Q. Z., Li, B., and Hou B., 2009, Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme: Applied Geophysics, 6(1), 42 - 49.
[5] Emerman, S., Schmidt, W., and Stephen, R., 1982, An implicit finite-difference formulation of the elastic wave equation: Geophysics, 47, 1521 - 1526.
[6] Fornberg, B., 1987, The pseudospectral method - comparisons with finite differences for the elastic wave equation: Geophysics, 52, 483 - 501.
[7] Gold, N., Shapiro, S. A., and Burr, E., 1997, Modeling of high contrasts in elastic media using a modified finite difference scheme: 68th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1850 - 1853.
[8] Graves, R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences: Bulletin of the Seismological Society of America, 86, 1091 - 1106.
[9] Lele, S. K., 1992, Compact finite difference schemes with spectral-like resolution: Journal of Computational Physics, 103, 16 - 42.
[10] Liu, Y., Li, C., and Mou, Y., 1998, Finite-difference numerical modeling of any even-order accuracy: Oil Geophysical Prospecting (in Chinese), 33, 1 - 10.
[11] Liu, Y., and Wei, X. C., 2008, Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media: Applied Geophysics, 5, 107 - 114.
[12] Liu, Y., and Sen, M. K., 2010a, A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation: Geophysics, 75(2), A1 - A6.
[13] Liu, Y., and Sen, M. K., 2010b. A hybrid absorbing boundary condition for elastic wave modeling with staggered-grid finite difference: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2945 - 2949.
[14] Liu, Y., and Sen, M. K., 2009a, A practical implicit finite-difference method: Examples from seismic modeling: Journal of Geophysics and Engineering, 6(3), 231 - 249.
[15] Liu, Y., and Sen, M. K., 2009b, An implicit staggered-grid finite-difference method for seismic modeling: Geophysical Journal International, 179(1), 459 - 474.
[16] Liu, Y., and Sen, M. K., 2009c, Numerical modeling of wave equation by a truncated high-order finite-difference method: Earthquake Science, 22(2), 205 - 213.
[17] Moczo, P., Kristek, J., and Halada, L., 2000, 3D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion: Bulletin of the Seismological Society of America, 90, 587 - 603
[18] Pei, Z., 2004, Numerical modeling using staggered-grid high order finite-difference of elastic wave equation on arbitrary relief surface: Oil Geophysical Prospecting (in Chinese), 39, 629 - 634.
[19] Robertsson, J., Blanch, J., and Symes, W., 1994, Viscoelastic finite-difference modeling: Geophysics, 59, 1444 - 1456.
[20] Saenger, E., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69, 583 - 591.
[21] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity stress finite difference method: Geophysics, 51, 889 - 901.
[22] Zhang, H., and Zhang, Y., 2007, Implicit splitting finite difference scheme for multi-dimensional wave simulation: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2011 - 2014.
[1] Hu Jun, Cao Jun-Xing, He Xiao-Yan, Wang Quan-Feng, and Xu Bin. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 367-381.
[2] Cheng Jing-Wang, Fan Na, Zhang You-Yuan, and Lü Xiao-Chun. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
[3] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[4] Ren Ying-Jun, Huang Jian-Ping, Yong Peng, Liu Meng-Li, Cui Chao, and Yang Ming-Wei. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
[5] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[6] Hu Song, Li Jun, Guo Hong-Bo, Wang Chang-Xue. Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well[J]. APPLIED GEOPHYSICS, 2017, 14(3): 351-362.
[7] Liu Xin, Liu Yang, Ren Zhi-Ming, Cai Xiao-Hui, Li Bei, Xu Shi-Gang, Zhou Le-Kai. Hybrid absorbing boundary condition for three-dimensional elastic wave modeling[J]. APPLIED GEOPHYSICS, 2017, 14(2): 270-278.
[8] . Cosine-modulated window function-based staggered-grid finite-difference forward modeling[J]. APPLIED GEOPHYSICS, 2017, 14(1): 115-124.
[9] Yang Si-Tong, Wei Jiu-Chuan, Cheng Jiu-Long, Shi Long-Qing, Wen Zhi-Jie. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models[J]. APPLIED GEOPHYSICS, 2016, 13(4): 621-630.
[10] Fu Bo-Ye, Fu Li-Yun, Wei Wei, Zhang Yan. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments[J]. APPLIED GEOPHYSICS, 2016, 13(4): 667-682.
[11] Tao Bei, Chen De-Hua, He Xiao, Wang Xiu-Ming. Rough interfaces and ultrasonic imaging logging behind casing[J]. APPLIED GEOPHYSICS, 2016, 13(4): 683-688.
[12] Chang Jiang-Hao, Yu Jing-Cun, Liu Zhi-Xin. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. APPLIED GEOPHYSICS, 2016, 13(3): 539-552.
[13] Zhang Qian-Jiang, Dai Shi-Kun, Chen Long-Wei, Qiang Jian-Ke, Li Kun, Zhao Dong-Dong. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement[J]. APPLIED GEOPHYSICS, 2016, 13(2): 257-266.
[14] Feng Yan, Sun Han, Jiang Yong. Data fitting and modeling of regional geomagnetic field[J]. APPLIED GEOPHYSICS, 2015, 12(3): 303-316.
[15] Wang Wei-Zhong, Hu Tian-Yue, Lv Xue-Mei , Qin Zhen, Li Yan-Dong, Zhang Yan. Variable-order rotated staggered-grid method for elastic-wave forward modeling[J]. APPLIED GEOPHYSICS, 2015, 12(3): 389-400.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn