APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (1): 63-70    DOI: 10.1007/s11770-013-0361-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves
Yang Hao-Xing1 and Wang Hong-Xia1
1. School of Science, National University of Defense Technology, Changsha 410073, China.
 Download: PDF (605 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially truncated boundaries. In this paper, a damping factor referred to as the Gaussian damping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Hao-Xing
WANG Hong-Xia
Key words simulation of seismic wave   perfectly matched layer (PML)   damping factor     
Received: 2011-11-01;
Fund:

The research is supported by the National Natural Science Foundation of China (No. 61072118).

Cite this article:   
YANG Hao-Xing,WANG Hong-Xia. A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves[J]. APPLIED GEOPHYSICS, 2013, 10(1): 63-70.
 
[1] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetics waves: Journal Computation Physics, 114, 185 - 200.
[2] Burns, D. R., 1992, Acoustic and elastic scattering from seamounts in three dimensions-numerical modeling study: J. Acoust. Soc. Amer., 92, 2784 - 2791.
[3] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50(4), 705 - 708.
[4] Clayton, R., Engquist, B., 1977, Absorbing boundary condition for acoustic and elastic wave equations: Bull. Sersm. Soc. Am., 67, 1529 - 1540.
[5] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elasto-dynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[6] Du, Q. Z., Sun, R. Y., Qin, T., Zhu, Y. T., and Bi, L. F., 2010, A study of perfectly matched layers for joint multicomponent reverse-time migration: Applied Geophysics, 7(2), 166 - 173.
[7] Hastings, F., Schneider, J. B., and Broschat, S. L., 1996, Application of the perfectly matched absorbing layer (PML) absorbing boundary condition to elastic wave propagation: Journal of Acoustic Society of America, 100(5), 3061 - 3069.
[8] Higdon, R. L., 1986, Absorbing boundary conditions for difference approximations to the multidimensional wave equation: Math. Comp., 47, 437 - 459.
[9] Higdon, R. L., 1987, Numerical absorbing boundary conditions for the wave equation: Math. Comp., 49, 65 - 90.
[10] Higdon, R. L., 1991, Absorbing boundary condition for elastic waves: Geophysics, 56(2), 231 - 241.
[11] Komatitsch, D., Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophysical Journal International, 154(1), 146 - 150.
[12] Liao, Z. P., Wong, H. L., Yang, B. P., and Yuan, Y. F., 1984, A transmitting boundary for transient wave analysis: Scientia Sinica (Series A), 27(10), 1063 - 1076.
[13] Wang, T., and Tang, X. M., 2003, Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched layer approach: Geophysics, 68(5), 1749 - 1755.
[14] Wang, Y. G., Xing, W. J., Xie, W. X., and Zhu, Z. L., 2007, Study of absorbing boundary condition by perfectly matched layer: Journal of China University of Petroleum (In Chinese), 31(1), 19 - 24.
No Similar of article
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn