APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 349-358    DOI: 10.1007/s11770-012-0345-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
岩石骨架模型与地震孔隙度反演
贺锡雷1,2,贺振华1,2,王绪本1,2,熊晓军2,蒋炼2
1. 成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059
2. 成都理工大学地球物理学院,成都 610059
Rock skeleton models and seismic porosity inversion
He Xi-Lei1,2, He Zhen-Hua1,2, Wang Xu-Ben1,2, Xiong Xiao-Jun2, and Jiang Lian2
1. State key laboratory of oil and gas reservoir geology and exploitation. Chengdu University of Technology, Chengdu 610059, China.
2. College of Geophysics, Chengdu University of Technology, Sichuan, Chengdu 610059, China.
 全文: PDF (961 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 通过引入岩石骨架参数表达式到Gassmann近似流体方程中,实现了基于该方程的地震孔隙度反演。但是岩石骨架参数表达式有很多种,使得地震孔隙度反演公式也各不相同,实际应用不方便,反演结果也难以评价。作者在研究现有常用岩石骨架参数表达式如Esheby -Walsh,Pride,Geertsma,Nur,Keys-Xu 以及Krief等的基础上,提出了含有调节参数的岩石骨架模型统一表示式,发展了基于Gassmann方程的地震孔隙度反演方法。该方法应用范围宽,参数调节方便、灵活。为验证所提公式和方法的实用性,作者们结合ZJ地区钻井岩心的岩石物理样品测试数据和测井数据,进行了地震孔隙度反演。由于该地区油气储层的存在与中等程度孔隙度的分布有关,因此地震孔隙度反演对预测和识别油气层、干层和含水层有重要作用。反演结果与工区内孔隙度测井曲线吻合度高,说明本文所提公式与方法是有效的,可靠的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺锡雷
贺振华
王绪本
熊晓军
蒋炼
关键词岩石物理   岩石骨架模型   调节参数   地震孔隙度反演   Gassmann方程     
Abstract: By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.
Key wordsRock physics   rock skeleton models   adjusting parameters   seismic porosity inversion   Gassmann’s equation   
基金资助:

本研究是由国家自然科学基金(编号:41174114)和国家科技重大专项(编号:2011ZX05025-005-010)联合资助。

引用本文:   
贺锡雷,贺振华,王绪本等. 岩石骨架模型与地震孔隙度反演[J]. 应用地球物理, 2012, 9(3): 349-358.
HE Xi-Lei,HE Zhen-Hua,WANG Xu-Ben et al. Rock skeleton models and seismic porosity inversion[J]. APPLIED GEOPHYSICS, 2012, 9(3): 349-358.
 
[1] Anderson, J. K., 1996, Limitations of seismic inversion for porosity and fluid: Lessons from chalk reservoir characterization and exploration: 66th Ann. Internat. Mtg., Soc. Explo. Geophys., Expanded Abstracts, 309 - 312
[2] Cai, H. P., He, Z. H., and Huang, D. J., 2011, Seismic data denoising based on mixed time-frequency methods: Applied Geophysics, 8(4), 319 - 327.
[3] Chen, R., and Huang, T. F., 2001, Petrophysics: Peking University Press, 75 - 80.
[4] Chen, R, Huang, T. F., and Liu, E. R., 2009, Petrophysics: China Science and Technology University Press, 83 - 88.
[5] Chen, X. H., Yang, W., He, Z. H., Zhong, W. L., and Wen, X. T. 2012, The algorithm of 3D multi-scale volumetric curvature and its application: Applied Geophysics, 9(1), 65 - 72
[6] Doyen, P. M., 1988, Porosity from seismic data: A geostatistical approach, Geophysics, 53(10), 1263 - 1275
[7] Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal indusion and related problems: Proc. Roy. London, A241, 376 - 396
[8] Geertsma, J., and Smith, D. C., 1961, Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics, 26(2), 169 - 181
[9] Gurevich, B. and Galvin, J., 2007, Fluid substitution, dispersion, and attenuation in fractured and porous reservoirs-insights from new rock physics modles: The Leading Edge, 26(9), 1162 - 1168.
[10] He, X.L., He Z.H. , Wang R.L.,Wang X. B., and Jiang L., 2011, Calculations of rock matrix modulus based on a linear regression relation: Applied Geophysics, 8(3), 155 - 162.
[11] He, Z H, Li, Y L, Cao, J, Li, Q , 2003, Ultrasonic physical modeling under real strata temperature and pressure: Progress in Exploration Geophysics, 26(2), 84 - 87
[12] He, Z. H., Xiong, X. J., and Bian, L., 2008, Numerical simulation low-frequency shadows and its application, Applied Geophysics, 5(4), 301 - 306.
[13] Jiang, L., Wen, X. T., He, Z. H., and Huang, D. J., 2011, Pore structure model simulation and prediction in reef-flat reservoir: Chinese J. Geophysics, 54(6), 1624 - 1633.
[14] Keys, R. G., Xu, S. Y., 2002, An approximation for the Xu-White velocity model: Geophysics. 67(5), 1406 - 1414.
[15] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The log Analyst, 31, 355 - 369.
[16] Lin, K., Xiong, X. J., Yang, X., He, Z. H., Cao, J. X., 2011, Self-adapting extraction of matrix mineral bulk modulus and verification of fluid substitution: Applied Geophysics, 8(2), 110 - 116.
[17] Liu, W.L., 1996, Reservoir exploitation seismic techniques: Petroleum Industrial Press, 92 - 95.
[18] Mavko, G., Mukerji, T., Dvorkin, J., 2003, The rock physics handbook-tools for seismic in porous media: Cambridge University Press.
[19] Nur, A., 1992, Critical porosity and the seismic velocities in rocks, EOS: Transactions America Geopysical Union, 73(1), 43 - 66.
[20] Pramalik, A. G., Singh, V., Vig, R., Srivastava, A. K., and Tiwary, D. N., 2004, Estimation of effective porosity using geostatistics and multiatribute transforms: A case study: Geophysics, 69(2), 352 - 372.
[21] Pride, S. R, Gangi, A. F., and Morgan, F. D., 1992 ,Deriving the equations of motion for porous isotropic media: Journal of the Acoustical Society of America, 92(6), 3278 - 3290.
[22] Russell, B. H., and Hedlin, K., 2003, Fluid-property discrimination with AVO: A Biot-Gassman prospective: Geophysics, 68(1), 29 - 39.
[23] Walsh, J. B., 1965, The effective of cracks on the compressibility of rock: J. Geophys. Res., 20(2), 381 - 384.
[24] Wen, X. T., He, Z. H., Huang, D. J., and Chen, X. H., 2011, Highlighting display of geological body based on directivity filtering. Applied Geophysics, 8(4), 355 - 362.
[25] Xiong, X. J., He, X. L., Pu, Y., He, Z. H., and Lin, K., 2011, High-precision frequency attenuation analysis and its application; Applied Geophysics, 8(4), 337 - 343.
[26] Zhang, J. J., Li, H. B., Liu, H. S., Ma, D. B., and Cui, X. F., 2010, Accuracy of dry frame models in the study of rock physics: Progress In Geophysics, 25(5), 1697 - 1702.
[27] Zhang, Y. B.,1994, A new method for seismic porosity inversion and its application, Oil Geophysical Prospecting, 29(3), 261 - 273.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[3] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[4] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[5] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[6] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[7] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[8] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[9] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[10] 黄欣芮, 黄建平, 李振春, 杨勤勇, 孙启星, 崔伟. 基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究[J]. 应用地球物理, 2015, 12(1): 11-22.
[11] 印兴耀, 孙瑞莹, 王保丽, 张广智. 基于地质统计先验信息的储层物性参数同步反演[J]. 应用地球物理, 2014, 11(3): 311-320.
[12] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
[13] 李景叶, 陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
[14] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[15] 李景叶. 基于流体替换技术的地震AVO 属性气藏识别[J]. 应用地球物理, 2012, 9(2): 139-148.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司