APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 804-819    DOI: 10.1007/s11770-025-1243-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于鱼鹰优化算法的瑞雷波频散曲线反演
李智,岳航羽*,马德锡,付宇,倪京阳,皮进军
(1. 中国地质调查局地球物理调查中心,河北 廊坊 065000;2. 中国地质调查局地球浅地表探测技术创新中心,河北 廊坊 065000;3. 中国地质大学(北京)地球物理与信息技术学院,北京 100083;4. 山东大学齐鲁交通学院,山东 济南 250000;5. 中国石油大学(北京)地球物理学院,北京102249
Inversion of Rayleigh wave dispersion curves based on the Osprey Optimization Algorithm
Zhi Li, Hang-yu Yue,*, De-xi Ma, Yu Fu, Jing-yang Ni, Jin-jun pi
1. Center for Geophysical Survey, China Geological Survey, Langfang, 065000, China 2. Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang, 065000, China 3. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, 100083, China 4. School of Qilu Transportation , Shandong University, Jinan, 250000, China 5. College of Geophysics, China University of Petroleum (Beijing), Beijing, 102249, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在瑞雷波勘探中,频散曲线反演是获取地下地层信息的关键步骤,其具有多参数、多极值的特点。频散曲线反演算法中局部优化算法高度依赖初始模型,易陷入局部极值;经典的全局优化算法存在收敛速度慢、求解精度低等问题。鉴于此,本文将一种全局搜索和局部开发能力强的鱼鹰优化算法(OOA)用于频散曲线反演研究,以提升频散曲线反演效果。在无噪声理论模型中,OOA算法展现出卓越的反演精度和稳定性,能够准确地反演出模型参数。在含噪声模型中,OOA依然表现出强大的稳健性,即使在高噪声条件下,仍能保持较高的反演精度。在多阶频散曲线测试中,OOA凭借其高效的全局和局部搜索能力,能够有效处理多阶频散曲线,反演结果与理论值高度一致。美国怀俄明地区与意大利某垃圾填埋场的实测数据进一步验证了OOA的实际应用价值。综合测试结果表明,OOA在频散曲线反演方面表现出色,显著优于粒子群算法(PSO),为频散曲线反演提供了高精度、高可靠性的反演策略。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词面波勘探   频散曲线反演   鱼鹰优化算法   粒子群算法   地球物理反演     
Abstract: In Rayleigh wave exploration, the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information, characterized by its multi-parameter and multi-extremum nature. Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima, while classical global optimization algorithms often suffer from slow convergence and low solution accuracy. To address these issues, this study introduces the Osprey Optimization Algorithm (OOA), known for its strong global search and local exploitation capabilities, into the inversion of dispersion curves to enhance inversion performance. In noiseless theoretical models, the OOA demonstrates excellent inversion accuracy and stability, accurately recovering model parameters. Even in noisy models, OOA maintains robust performance, achieving high inversion precision under high-noise conditions. In multimode dispersion curve tests, OOA effectively handles higher modes due to its efficient global and local search capabilities, and the inversion results show high consistency with theoretical values. Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA. Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization (PSO) algorithm, providing a highly accurate and reliable inversion strategy for dispersion curve inversion.
Key wordssurface wave exploration    dispersion curve inversion    Osprey Optimization Algorithm    Particle Swarm Optimization    geophysical inversion   
收稿日期: 2025-05-10;
基金资助:Supported Projects: This work was sponsored by China Geological Survey Project (DD20243193 and DD20230206508).
通讯作者: 岳航羽(Email: yuehangyu_cgs@163.com).     E-mail: yuehangyu_cgs@163.com
作者简介: Zhi Li, female, Master of Engineering,Assistant Engineer, graduated in 2024 from Northeast Petroleum University with a master’s degree in Geological Engineering and now works at the Center for Geophysical Survey, China Geological Survey, mainly engaged in research and application of seismic exploration methods.Email: lizhi_812@163.com
引用本文:   
. 基于鱼鹰优化算法的瑞雷波频散曲线反演[J]. 应用地球物理, 2025, 22(3): 804-819.
. Inversion of Rayleigh wave dispersion curves based on the Osprey Optimization Algorithm[J]. APPLIED GEOPHYSICS, 2025, 22(3): 804-819.
 
没有本文参考文献
[1] 朱孟权, 王之洋*,刘洪 , 李幼铭,Yu Du-li. 基于随机增强量子粒子群算法的弹性波数值模拟[J]. 应用地球物理, 2024, 21(1): 80-92.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司