APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2019, Vol. 16 Issue (1): 70-82    DOI: 10.1007/s11770-019-0750-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*
谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem
1.中国地质大学(北京)地球物理与信息技术学院,北京 100083;
2.北京京能油气资源开发有限公司,北京 100022;
3.中国石化石油勘探开发研究院,北京 100083;
4.中国地质调查局发展研究中心,北京 100037;
5.真纳大学地球科学学院,伊斯兰堡 45320, 巴基斯坦
Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*
Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem
1. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China.
2. Beijing Energy Oil & Gas Resources Development Co. Ltd., Beijing 100022, China.
3. Petroleum Exploration and Production Research Institute, Beijing 100083, China.
4. Development and Research Center, China Geological Survey, Beijing 100037, China.
5. Department of Earth Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan.
 全文: PDF (1692 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 多波地震资料采集和处理技术的发展促进了联合PP波和PS波数据的多波联合AVO反演的应用。但常规多波联合反演是线性的,通常基于Zoeppritz方程近似式进行多次迭代,导致其在远炮检距情况下求解得到的纵、横波速度和密度等参数精度不高。多波联合反演存在非线性问题。为此,本文提出了一种基于精确Zoeppritz方程的非线性反演方法。该方法结合改进的贝叶斯推断和最小二乘支持向量机方法来求解非线性反演问题。首先, 采用粒子群算法来优化贝叶斯推断的参数初始值。改进的贝叶斯推断是通过最大化超参数的后验概率来获得最小二乘支持向量机的最优参数,提高了最小二乘支持向量机的学习和泛化能力。然后,利用此最优参数建立PP波、PS波反射振幅与弹性参数之间的最优非线性最小二乘支持向量机模型,从而提高了多波联合反演的精度。该方法只需训练一次模型,就可以解决多波联合反演的非线性问题。模型测试表明,利用该方法反演出的弹性参数精度要高于仅用PP波进行贝叶斯线性近似式反演得到的结果。此外加噪模型数据的反演结果表明,该方法具有较好的抗噪性。实际多波资料的应用进一步验证了方法的可行性及其相对于PP波贝叶斯线性近似式反演的优势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词非线性问题   多波联合反演   粒子群算法   贝叶斯推断   最小二乘支持向量机     
Abstract: Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion; however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset; thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defines the relationship between seismic reflection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion.
Key wordsNonlinear problem   joint PP–PS AVO inversion   particle swarm optimization   Bayesian inference   least squares support vector machine   
收稿日期: 2018-03-10;
基金资助:

本研究项目由中央高校基本科研业务费优秀导师基金项目(编号:2652017438)和国家科技重大专项(编号:2016ZX05003-003)联合资助。

通讯作者: 王彦春(wangyc@cugb.edu.cn)     E-mail: wangyc @cugb.edu.cn
作者简介: 谢玮,中国地质大学(北京)地球物理与信息技术学院地球探测与信息技术专业在读博士生,2016年硕士毕业于中国地质大学(北京)。主要研究方向为地震资料叠前反演与储层预测。Email: xw2008xwcs@qq.com
引用本文:   
. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
 
没有本文参考文献
[1] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
[2] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司