APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (3): 757-769    DOI: 10.1007/s11770-025-1292-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于LightGBM-RFECV耦合算法的地震多属性砂体识别方法
任腾飞,封志兵*,张影,张翔,江丽,宁媛丽,王静宜,丁剑,齐增硕
1. 东华理工大学核资源与环境国家重点实验室,江西南昌330013;2. 东华理工大学铀资源探采与核遥感全国重点实验室,江西南昌 330013;3. 中国石油长庆油田分公司第一采油厂,陕西延安 716000;4. 核工业航测遥感中心,河北石家庄050002
A Seismic Multi-Attribute Sandbody Identification Method Based on the LightGBM-RFECV Coupling Algorithm
Teng-fei Ren, Zhi-bing Feng*, Ying Zhang, Xiang Zhang, Li Jiang, Yuan-li Ning,Jing-yi Wang, Jian Ding, Zeng-shuo Qi
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi,330013, China 2. National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing East China University of Technology, Nanchang, Jiangxi, 330013, China 3. No.1 Oil Production Plant, Changqing Oilfi eld Company, PetroChina, Yan’an, Shanxi, 716000, China 4. Aribore Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang, Hebei, 050002, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震属性蕴含着丰富的储层信息,可有效支持储层预测。鉴于砂体与地震属性之间存在非线性关系,本研究采用RFECV方法进行地震属性优选,并将优选属性输入LightGBM模型以提高砂体识别的精度。基于优选地震属性与钻井资料构建训练样本集,经过平衡化处理后作为机器学习模型的输入变量,将砂体概率作为输出变量,采用网格搜索优化模型参数,建立高精度砂体预测模型。以荷兰北海F3区块三维地震数据为例,该方法成功刻画了目的层段砂岩的三维空间展布。结果表明:在强噪声背景下,基于LightGBM的多属性砂体识别方法仍有效表征砂体分布特征。相较于未经优选属性,优选属性的预测结果具有更高的垂向分辨率和井间吻合度,显著改善了砂体边界刻画精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词砂体识别   地震属性   LightGBM模型   RFECV方法     
Abstract: Seismic attributes encapsulate substantial reservoir characterization information and can eff ectively support reservoir prediction. Given the high-dimensional nonlinear between sandbodies and seismic attributes,this study employs the RFECV method for seismic attribute selection, inputting the optimized attributes into a LightGBM model to enhance spatial delineation of sandbody identifi cation. By constructing training datasets based on optimized seismic attributes and well logs, followed by class imbalance correction as input variables for machine learning models, with sandbody probability as the output variable, and employing grid search to optimize model parameters, a high-precision sandbody prediction model was established. Taking the 3D seismic data of Block F3 in the North Sea of Holland as an example, this method successfully depicted the three-dimensional spatial distribution of target formation sandstones. The results indicate that even under strong noise conditions, the multi-attribute sandbody identifi cation method based on LightGBM eff ectively characterizes the distribution features of sandbodies. Compared to unselected attributes, the prediction results using selected attributes have higher vertical resolution and inter-well conformity, with the prediction accuracy for single wells reaching 80.77%, significantly improving the accuracy of sandbody boundary delineation.
Key wordsSandbody identification    Seismic attributes    LightGBM model    RFECV method   
收稿日期: 2025-03-19;
基金资助:This study was co-funded by the China National Nuclear Corporation-State Key Laboratory of Nuclear Resources and Environment (East China University of Technology) Joint Innovation Fund Project (No. 2023NRE-LH-08), the Natural Science Foundation of Jiangxi Province, China (No. 20252BAC240270), the Funding of National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing (2025QZ-YZZ-08), and the National Major Science and Technology Project on Deep Earth of China (No.2024ZD1003300).
通讯作者: Zhi-bing Feng (Email:zbfengjl@163.com).     E-mail: zbfengjl@163.com
作者简介: Teng-fei Ren, Master's student, graduated from Shandong Jianzhu University with a Bachelor of Engineering degree in 2022. He is currently a master's student in the School of Geophysics and Space Exploration at East China University of Technology. His research focuses on seismic attribute analysis and sandbody identification.
引用本文:   
. 基于LightGBM-RFECV耦合算法的地震多属性砂体识别方法[J]. 应用地球物理, 2025, 22(3): 757-769.
. A Seismic Multi-Attribute Sandbody Identification Method Based on the LightGBM-RFECV Coupling Algorithm[J]. APPLIED GEOPHYSICS, 2025, 22(3): 757-769.
 
没有本文参考文献
[1] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
[2] 黄亚平, 耿建华, 郭彤楼. 一种新的地震属性:基于灰色-消除趋势波动法的分形标度指数[J]. 应用地球物理, 2015, 12(3): 343-352.
[3] 祁雪梅, 张绍聪. 基于D-S证据理论的地震多属性融合方法在煤层气富集区预测中的应用[J]. 应用地球物理, 2012, 9(1): 80-86.
[4] 黄亚平, 耿建华, 钟广法, 郭彤楼, 蒲勇, 丁孔芸, 麻纪强. 基于Hilbert-Huang变换的地震瞬时属性提取方法及应用[J]. 应用地球物理, 2011, 8(2): 125-133.
[5] 黄亚平, 董守华, 耿建华. 非线性地震属性在煤矿奥陶系灰岩含水性预测中的应用研究[J]. 应用地球物理, 2009, 6(4): 385-392.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司