APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (1): 197-208    DOI: 10.1007/s11770-024-1163-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于VMD和随机森林算法的煤层顶板富水砂岩孔隙度预测
黄亚平*,祁雪梅,程彦,周玲玲,严家豪,皇范蕤
1 . 中国矿业大学 资源与地球科学学院, 江苏徐州221116;2. 中国煤炭地质总局,北京 100038;3. 江苏省地质局第一地质大队,江苏南京 210041
Prediction of sandstone porosity in coal seam roof based on variable mode decomposition and random forest method
Huang Ya-ping,*, Qi Xue-mei, Cheng Yan, Zhou Ling-ling, Yan Jia-hao, and Huang Fan-rui
1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China; 2. China National Administration of Coal Geology, Beijing 100038, China; 3. The First Geological Brigade of Jiangsu Geological Bureau, Nanjing 210041, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 煤层顶板砂岩富水严重影响煤矿的安全开采,是矿井水害防治的重要研究内容,砂岩富水性与孔隙度密切相关。反射地震勘探数据提供了高密度空间采样信息,利用反射地震数据开展煤层顶板砂岩孔隙度预测可获得高精度的空间分布结果。首先介绍了变模态分解法和随机森林算法的基本原理;然后构建了煤层顶板砂岩地质模型,对其进行地震正演模拟并添加随机噪音,对比分析了经验模态分解法和变模态分解法对含噪信号的分解效果,测试结果表明变模态分解法分解的IMF1和IMF2包含了地震信号的主要有效成分;提出了基于变模态分解和随机森林算法结合的孔隙度预测流程,在模型数据孔隙度预测中进行了试算,验证了方法的可行性。以实际煤田反射地震数据为例,预测了煤层顶板砂岩的孔隙度,显示了本文提出的孔隙度预测新方法潜在的应用价值,对煤层顶板砂岩富水性评价以及矿井水害防治均具有重要的理论指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词VMD    随机森林算法   煤层   砂岩   孔隙度     
Abstract: Evaluation of water richness in sandstone is an important research topic in the prevention and control of mine water disasters, and the water richness in sandstone is closely related to its porosity. The reflection seismic exploration data have high-density spatial sampling information, which provides an important data basis for the prediction of sandstone porosity in coal seam roofs by using reflection seismic data. First, the basic principles of the variational mode decomposition (VMD) method and the random forest method are introduced. Then, the geological model of coal seam roof sandstone is constructed, seismic forward modeling is conducted, and random noise is added. The decomposition effects of the empirical mode decomposition (EMD) method and VMD method on noisy signals are compared and analyzed. The test results show that the firstorder intrinsic mode functions (IMF1) and IMF2 decomposed by the VMD method contain the main effective components of seismic signals. A prediction process of sandstone porosity in coal seam roofs based on the combination of VMD and random forest method is proposed. The feasibility and eff ectiveness of the method are verifi ed by trial calculation in the porosity prediction of model data. Taking the actual coalfield reflection seismic data as an example, the sandstone porosity of the 8 coal seam roof is predicted. The application results show the potential application value of the new porosity prediction method proposed in this study. This method has important theoretical guiding significance for evaluating water richness in coal seam roof sandstone and the prevention and control of mine water disasters.
Key wordsVMD    random forest method    coal seams    sandstone    porosity   
收稿日期: 2024-10-01;
基金资助:This work was supported by the National Natural Science Foundation of China (Grant No. 42274180) and the National Key Research and Development Program of China (2021YFC2902003).
通讯作者: 黄亚平 (email: yphuang@cumt.edu.cn).     E-mail: yphuang@cumt.edu.cn
作者简介: Huang Ya-Ping received his Ph.D. in Solid Geophysics from Tongji University in 2011. Currently, he serves as an associate professor at the School of Resources and Geosciences, China University o fMiningandTechnology. His research interests include seismic data interpretation, reservoir prediction, and rock physics.
引用本文:   
. 基于VMD和随机森林算法的煤层顶板富水砂岩孔隙度预测[J]. 应用地球物理, 2025, 22(1): 197-208.
. Prediction of sandstone porosity in coal seam roof based on variable mode decomposition and random forest method[J]. APPLIED GEOPHYSICS, 2025, 22(1): 197-208.
 
没有本文参考文献
[1] 张兵,祁雪梅,黄亚平*,张海锋,皇范蕤. 基于地震纹理属性的深部煤层气储层裂缝预测方法研究[J]. 应用地球物理, 2024, 21(4): 794-804.
[2] 潘保芝,周伟一,郭宇航*,房春慧,张丽华,. 气体饱和度对致密砂岩中P波速度影响的实验研究[J]. 应用地球物理, 2024, 21(3): 487-495.
[3] 郑海青,胡琳旎,孙晓云*,张雨,金申熠. 面向小样本场景的基于多源域迁移学习的边坡位移预测[J]. 应用地球物理, 2024, 21(3): 496-504.
[4] 师素珍*, 刘最亮, 谷剑英, 段培飞, 韩琦, 齐佑朝, 张新. 基于随机森林声波曲线构建的盾构机掘进路线预测[J]. 应用地球物理, 2024, 21(1): 69-79.
[5] 张佳佳,陈康,张广智,狄贵东,徐磊磊,谷一鹏. 基于孔隙形状替换的储层孔隙类型预测方法[J]. 应用地球物理, 2021, 18(1): 31-44.
[6] 姬广忠, 张平松,郭立全,杨思通,丁仁伟. TI 介质Love 型槽波频散曲线特性*[J]. 应用地球物理, 2020, 17(2): 243-252.
[7] 李长喜,刘秘,郭彬程. 基于核磁共振测井的致密砂岩储层分类方法研究*[J]. 应用地球物理, 2019, 16(4): 557-566.
[8] 李亚军,张小莉,阎媛子. 鄂尔多斯盆地三叠系延长组相对高放射性砂岩定量识别*[J]. 应用地球物理, 2019, 16(3): 315-321.
[9] 王大兴,王浩璠,马劲风,王永刚,张娜,李琳. 苏里格致密气藏射线弹性阻抗流体识别综合研究[J]. 应用地球物理, 2019, 16(2): 231-245.
[10] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[11] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[12] 李勤, 马随波, 赵斌, 章薇. 基于煤层的改进的旋转交错网格有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4(2)): 582-590.
[13] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
[14] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[15] 郭志华,宋延杰,唐晓敏,王超. 基于差分方程和通用阿尔奇方程的含黄铁矿混合泥质砂岩电阻率模型[J]. 应用地球物理, 2018, 15(2): 208-221.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司