APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2024, Vol. 21 Issue (1): 69-79    DOI: 10.1007/ s11770-021-0960-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于随机森林声波曲线构建的盾构机掘进路线预测
师素珍*, 刘最亮, 谷剑英, 段培飞, 韩琦, 齐佑朝, 张新
1. 煤炭资源与安全开采国家重点实验室,北京 100083; 2. 华阳新材料科技集团有限公司,阳泉 37000; 3. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083; 4. 中水北方勘测设计研究有限责任公司,天津 300222
Tunneling route prediction of shield machine based on random forest P-wave generation
Shi Su-zhen*, Gu Jian-ying, Liu Zui-liang, Duan Pei-fei, Han Qi, Qi You-chao, Zhang Xin
1. State Key Laboratory of Coal Resources and Safety Mining, Beijing 100083, P.R. China; 2. Yangquan Coal Industry (Group) Co. LTD, Yangquan 37000. 3. Bei Fang Investigation, Design & Research CO.LTD, Tianjin 300222; 4. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, P.R. China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 近年来,煤矿井下为了提高生产效率,将盾构机应用到巷道掘进中。地质条件是决定盾构机工作效率的重要因素,盾构机施工围岩以石灰岩、砂岩等中硬岩最为有利,因此拟掘进巷道位置的岩性预测成为提高盾构机工作效率的核心问题。目前地震反演是岩性预测的重要手段,阳泉新景区块由于部分声波测井曲线缺失,对波阻抗反演产生了影响,因此,如何利用已有的测井曲线生成缺失的声波测井曲线以及如何利用盾构机工作行进中的岩性揭露数据不断更新前方岩性分布预测结果成为当前亟待解决的关键。首先对测井曲线进行标准化等预处理,针对声波测井曲线缺失问题,引入随机森林回归算法,利用密度(Density)、自然伽马(GR)、视电阻率(Res)和自然电位(SP)4种测井曲线作为特征变量,建立曲线回归预测模型,预测声波(P-wave)测井曲线。在分析声波曲线和伽马曲线原理的基础上,进行拟声波曲线构建并做拟声波反演,在反演数据体上解释K7砂岩的顶和底界面,将解释得到的地震解释层位信息从时间域数据转换到深度域,经验证实预测结果与揭露数据符合率较高。同时,结合盾构机工作行进中的岩性揭露数据对目标巷道剖面的K7砂体分布预测进行了多次更新迭代,精细刻画了巷道位置K7砂岩的分布情况,为盾构机掘进路线优选提供了有效指导。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词随机森林   曲线构建   拟声波反演   K7砂岩展布   盾构机掘进路线     
Abstract: In recent years, coal mine has applied shield tunneling machines to roadway excavation to improve production efficiency. Geological condition is an important factor that determines the efficiency of shield machines. The shield machine is most favorable for medium to hard surrounding rocks such as limestone and sandstone. Therefore, the lithology prediction of the location of a planned excavation roadway becomes the core issue in improving the efficiency of the shield machine. At present, seismic inversion is an essential method for lithology prediction. However, in Yangquan Xinjing area, missing P-wave logging curves affects the impedance inversion. Therefore, using existing logging curves to generate missing P-wave logging curves and using sandstone exposure data to continuously update lithology distribution prediction results are of great interest. In this study, logging curves were first pretreated by standardization to ensure the inversion effect. Because of the missing acoustic logging curves, the random forest regression algorithm was introduced using density, natural gamma, apparent resistivity, and spontaneous potential curves as characteristic variables to establish a curve regression prediction model. Then, P-wave logging curves were acquired. After a full analysis of the principles of acoustic and gamma curves, a quasi-acoustic curve is constructed, and a quasi-acoustic inversion was performed. The top and bottom interfaces of the K7 sandstone were interpreted on the inversion data body. The interpreted horizon information was converted from the time domain to the depth domain. The predicted results agreed well with the exposed data. At the same time, combined with the lithology exposure data from the shield tunneling machine, the distribution prediction of the K7 sand body in the target roadway section was updated and iterated many times, which provided effective guidance for the optimization of the tunneling route of the shield tunneling machine.
Key words curve construction   K7 sandstone distribution   quasi-acoustic inversion   random forest   route of shield machine;   
收稿日期: 2021-05-20;
基金资助:This work was supported by the Joint Fund of the State Key Laboratory of Coal Resources and Safe Mining-Beijing University Outstanding Young Scientists Program Project (BJJWZYJH01201911413037); State Key Laboratory of “Coal Resources and Safe Mining” Open Fund (SKLCRSM19ZZ02)
通讯作者: Shi Su-zhen (Email: ssz@cumtb.edu.cn)     E-mail: ssz@cumtb.edu.cn
作者简介: Shi Suzhen is an associate professor and master supervisor at the China University of Mining and Technology (Beijing). Her main work is seismic data interpretation and inversion. Her contact information is State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), 11 Ding Xueyuan Road, Haidian District, Beijing 100083, China. Her email address is ssz@cumtb.edu.cn.
引用本文:   
. 基于随机森林声波曲线构建的盾构机掘进路线预测[J]. 应用地球物理, 2024, 21(1): 69-79.
. Tunneling route prediction of shield machine based on random forest P-wave generation[J]. APPLIED GEOPHYSICS, 2024, 21(1): 69-79.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司