APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2024, Vol. 21 Issue (2): 207-220    DOI: 10.1007/s11770-024-1084-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于源体生长思想的全张量重力梯度数据联合反演
侯振隆,赵信阳,张代磊,赵福权,王家辉
1、东北大学资源与土木工程学院,沈阳; 2、中国地质科学院,北京; 3、中基发展建设工程有限责任公司,北京
Joint inversion of full-tensor gravity gradiometry data based on source growing
Hou Zhen-Long, Zhao Xin-Yang, Zhang Dai-Lei*, Zhao Fu-Quan, Wang Jia-Hui
1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China 2. Chinese Academy of Geological Sciences, Beijing 100094, China 3. China Solibase Engineering Co., LTD., Beijing 101300, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于源体生长思想的三维反演是一种使用系统搜索的反演方法。和正则化反演相比,该方法计算量小,运算速度快。源体生长的判断准则是其核心,影响着结果质量。本文提出了一种全张量重力梯度数据源体生长反演方法,旨在提高纵向的反演效果。首先,在判断准则中引入深度加权函数,优化对不同深度上源体生长的判断;其次,根据单分量梯度数据反演结果,调整不同类型数据的权重,建立联合反演方法;最后,利用矩阵压缩减少内存占用,提高反演计算效率。通过模型数据与文顿盐丘地区实测数据试验,证明了提出的方法能够有效地引导源体生长,对深部目标具有更高的分辨能力,适用于较复杂形态目标的反演,且具有较高的计算效率和抗噪性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词全张量重力梯度数据   源体生长   联合反演   矩阵压缩     
Abstract: Three-dimensional inversion based on source growing uses systematic searches. Compared with the regularization inversion, this method has lower computational requirements and faster processing speed. The criteria determining the source growth is crucial for the quality of the results. This study proposes an inversion based on source growing with full-tensor gravity gradiometry data to improve vertical inversion effectiveness. First, a depth weighting function is introduced for the criteria to optimize the determination of source growing at diff erent depths. Second, the weights of different data are adjusted based on the inversion results of singlecomponent gradient data, and a joint inversion method is established. Finally, matrix compression reduces memory occupation and improves computational efficiency. By the tests of synthetic data and real data from Vinton Dome, it is demonstrated that the proposed method can effectively guide source growing, providing stronger ability for distinguishing deep targets and being suitable for the inversion of complex-shaped targets. Furthermore, the method has high computational efficiency and anti-noise ability.
Key words:   
收稿日期: 2023-11-27;
基金资助:本文是由国家自然科学基金(42204140)资助的。感谢Bell Geospace Inc.提供的实测重力梯度数据。
通讯作者: 张代磊 (zhangdl18@cags.ac.cn).     E-mail: zhangdl18@cags.ac.cn
作者简介: Hou Zhen-Long, Post-doctor, got Bachelor’s degree of Geophysics from Jilin University in 2011; Ph.D. of Computer System and Architecture graduated from Jilin University in 2016; works as a postdoctor in Northeastern University from 2016 to 2019. The main research interests are gravity & magnetic exploration data processing & interpretation and the parallel computing methods. Address: No. 3-11, Wenhua Road, Heping District, Shenyang, P.R.China; Post Code: 110819 E-mail: houzlatjlu@163.com; houzhenlong@mail.neu.edu.cn
引用本文:   
. 基于源体生长思想的全张量重力梯度数据联合反演[J]. 应用地球物理, 2024, 21(2): 207-220.
. Joint inversion of full-tensor gravity gradiometry data based on source growing[J]. APPLIED GEOPHYSICS, 2024, 21(2): 207-220.
 
没有本文参考文献
[1] 彭国民,孙中宇,刘展. 基于零阶最小熵正则化的井地重力异常三维联合反演[J]. 应用地球物理, 2021, 18(2): 131-144.
[2] 高秀鹤,熊盛青,曾昭发,于长春,张贵宾,孙思源. 基于正弦函数相关性约束的重磁数据联合三维反演方法*[J]. 应用地球物理, 2019, 16(4): 526-536.
[3] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[4] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[5] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[6] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[7] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
[8] 胡国庆, 刘洋, 魏修成, 陈天胜. 基于贝叶斯原理的PP波和PS波AVO联合反演方法研究[J]. 应用地球物理, 2011, 8(4): 293-302.
[9] 王璞, 胡天跃. 转换波AVO近似及其在PP/PS联合反演中的应用[J]. 应用地球物理, 2011, 8(3): 189-196.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司