APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2021, Vol. 18 Issue (2): 199-212    DOI: 10.1007/s11770-021-0894-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维Res-UNet 和知识蒸馏相结合的断层识别方法研究
王静1,张军华1,张家良2,芦凤明2,孟瑞刚2,王作乾1
1.中国石油大学(华东)地学院,青岛 266580;
2. 中国石油大港油田勘探开发研究院,天津 300280
Research on fault recognition method combining 3D Res-UNet and knowledge distillation
Wang Jing 1, Zhang Jun-Hua♦1, Zhang Jia-Liang 2, Lu Feng-Ming 2, Meng Rui-Gang 2, and Wang  Zuoqian 1
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.
2. Research Institute of Exploration and Development, Dagang Oilfi eld Company, PetroChina, Tianjin 300280, China.
 全文: PDF (1463 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 随着计算机和人工智能的发展,深度学习技术越来越多地应用于地球物理领域,多种基于浅层卷积神经网络的算法在断层识别中已得到广泛应用。本文基于深度残差网络捕获学习特征较强的优势,引入残差块替换三维UNet 编码器和解码器的所有卷积层构建新的三维Res-UNet 网络结构,选择合适的网络参数训练人工合成的断层样本,训练完成后保存预测模型;然后引入知识蒸馏的机制,首先将三维Res-UNet 作为教师模型进行训练,然后将三维Res-UNet 作为学生网络进行训练,在此过程中,教师网络处于评估模式,不参与训练,通过计算混合损失函数将教师网络模型和学生网络结合到一起预测断层,使其学习到更多的断层信息,提升网络性能,增强网络的泛化能力,最终达到优化断层识别效果的目的。理论模型测试的量化评价结果证明了知识蒸馏后的三维Res-UNet 使断层识别的准确率由0.956 提高到0.993,实际地震资料的应用同样验证了该方法的有效性和可行性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地震资料解释   断层识别   三维Res-UNet   残差模块   知识蒸馏     
Abstract: Deep learning technologies are increasingly used in the fi eld of geophysics, and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition, but these methods are usually not able to accurately identify complex faults. In this study, using the advantage of deep residual networks to capture strong learning features, we introduce residual blocks to replace all convolutional layers of the three-dimensional (3D) UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data. After the training is completed, we introduce the mechanism of knowledge distillation. First, we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network; in this process, the teacher network is in evaluation mode. Finally, we calculate the mixed loss function by combining the teacher model and student network to learn more fault information, improve the performance of the network, and optimize the fault recognition effect. The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation, and the effectiveness and feasibility of our method can be verified based on the application of actual seismic data.
Key wordsseismic data interpretation   fault recognition   3D Res-UNet   residual block   knowledge distillation     
收稿日期: 2021-01-27;
基金资助:

本研究由国家自然基金项目(编号:42072169)资助。

通讯作者: 张军华(Email:zjh_upc@163.com)     E-mail: zjh_upc@163.com
作者简介: 王静 博士研究生,1985 年生;2008、2011 年分别获中国石油大学(华东)勘查技术与工程专业学士学位和地球探测与信息技术专业硕士学位;现在中国石油大学(华东)地球科学与技术学院攻读地质资源与地质工程专业博士学位,主要从事地震资料解释,重点研究人工智能在地球物理勘探领域中的应用。
引用本文:   
. 三维Res-UNet 和知识蒸馏相结合的断层识别方法研究[J]. 应用地球物理, 2021, 18(2): 199-212.
. Research on fault recognition method combining 3D Res-UNet and knowledge distillation[J]. APPLIED GEOPHYSICS, 2021, 18(2): 199-212.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司