APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 108-113    DOI: 10.1007/s11770-012-0320-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
声波测井中的相速度与群速度讨论
王晶,陈德华,张海澜,张秀梅,何 晓,王秀明
中国科学院声学研究所声场声信息国家重点实验室, 北京 100190
Studies on phase and group velocities from acoustic logging*
Wang Jing♦, Chen De-Hua, Zhang Hai-Lan, Zhang Xiu-Mei, He Xiao, and Wang Xiu-Ming
State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190
 全文: PDF (509 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 声波测井过程中获取的速度到底是相速度还是群速度,目前仍存在一些争议,本文从理论分析和数值模拟的角度,使用三种模型对这一问题进行了研究。首先,构造一个相速度与群速度可调的稳态声波传播模型——不同声速的两个平面波叠加模型,利用慢度时间相关(STC)方法提取声波波速,数值模拟结果表明,无论相速度较大或是群速度较大,STC方法提取出来的波速都是相速度;其次,通过频散分析和割线积分得到刚性壁圆柱流体模型中的频散曲线与分波波形,使用STC方法得到的速度与相速度的频散曲线吻合较好,而直接读取波至获得的速度与群速度的频散曲线趋势一致;最后,利用频散分析和实轴积分方法,获得偶极子在慢地层中激发的模式及全波波形,得到的结果再次验证了刚性壁圆柱流体模型中的结论。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晶
陈德华
张海澜
张秀梅
何 晓
王秀明
关键词声波测井   慢度时间相关法   相速度   群速度   频散曲线     
Abstract: It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the fi rst-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.  
Key wordsAcoustic logging   slowness-time coherence   phase velocity   group velocity   dispersion curve   
收稿日期: 2011-03-21;
基金资助:

国家自然科学基金(40774099,10874202,11134011),国家高技术研究发展计划(863)(2008AA06Z205)联合资助。

引用本文:   
王晶,陈德华,张海澜等. 声波测井中的相速度与群速度讨论[J]. 应用地球物理, 2012, 9(1): 108-113.
WANG Jing,CHEN De-Hua,ZHANG Hai-Lan et al. Studies on phase and group velocities from acoustic logging*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 108-113.
 
[1] Cheng, C. H., and Toksoz, M. N., 1981, Elastic wave propagation in a fluid-filled borehole and synthetic
[2] acoustic logs: Geophysics, 46(7), 1042 - 1053.
[3] Hornby, B., Wang, X. M., and Dodds, K., 2003, Do we measure phase or group velocity with dipole sonic tools:
[4] th EAGE Conference and Exhibition, Norway, F - 29.
[5] Kim, K. Y., and Sachse, W., 1993, Determination of all elastic-constants of transversely isotropic media with a
[6] cusp around the symmetrical axis by use of elastic pulses propagating in 2 principal directions: Physical Review B,
[7] (17), 10993 - 11000.
[8] Kimball, C. V., and Marzetta, T. L., 1984, Semblance processing of borehole acoustic array data: Geophysics,
[9] (3), 274 - 281.
[10] Sinha, B. K., Simsek, E., and Liu, Q. H., 2006, Elasticwave propagation in deviated wells in anisotropic
[11] formations: Geophysics, 71(6), D191 - D202.
[12] Tang, X. M., and Cheng, A., 2004, Quantitative borehole acoustic methods: Elsevier, Amsterdam, Boston.
[13] Wang, X. M., Hornby, B., and Dodds, K., 2002, Dipole sonic response in deviated boreholes penetrating an
[14] anisotropic formation: 72th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 360 - 363.
[15] Zhang, H. L., 2007, Theoretical acoustics (in Chinese): Higher Education Press, Beijing.
[16] Zhang, H. L., Wang, X. M., and Zhang, B. X., 2004, Acoustic field and wave in borehole (in Chinese):
[17] Science Press, Beijing.
[18] Zhu, Z. Y., Chi, S. H., and Toksoz, M. N., 2007, Sonic logging in deviated boreholes penetrating an anisotropic
[19] formation: Laboratory study: Geophysics, 72(4), E125 - E134.
[1] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[2] 李欣欣,李庆春. 基于Aki公式的主动源瑞雷波频散曲线提取方法研究[J]. 应用地球物理, 2018, 15(2): 290-298.
[3] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[4] 杨小慧, 曹思远, 李德春, 于鹏飞, 张浩然. 瑞利型槽波品质因子及特性分析[J]. 应用地球物理, 2014, 11(1): 107-114.
[5] 王华, 陶果, 尚学峰, 方鑫定, Daniel R Burns. 随钻声波测井有限差分数值模拟中完全匹配层吸收边界的稳定性研究[J]. 应用地球物理, 2013, 10(4): 384-396.
[6] 王祝文, 王晓丽, 向旻, 刘菁华, 张雪昂, 杨闯. 基于分数阶Fourier变换及SPWD分布的储集层信息提取[J]. 应用地球物理, 2012, 9(4): 391-400.
[7] 芦俊, 王赟. Kelvin粘弹性VTI介质中地震波的传播[J]. 应用地球物理, 2010, 7(4): 357-364.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司