APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 95-107    DOI: 10.1007/s11770-012-0319-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于星载GPS的HY-2卫星高精度精密定轨模拟研究
郭金运1,2,秦建1,孔巧丽1,2,李国伟1
1.山东科技大学测绘学院,青岛266590;
2.海岛(礁)测绘技术国家测绘地理信息局重点实验室,青岛266590
On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique*
Guo Jin-Yun1, 2, Qin Jian1, 2, Kong Qiao-Li1, 2, and Li Guo-Wei1
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China.
2. Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG, Qingdao 266590, China.
 全文: PDF (1217 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 HY-2 卫星是我国第一颗测高卫星,其径向定轨精度要求厘米量级,搭载了星载GPS接收机。目前HY-2 还处于测试阶段,没有公布观测数据。为了确定基于星载GPS 的HY-2精密定轨流程及其定轨精度,本文模拟了HY-2 卫星星载GPS 观测数据,结果表明HY-2 星载GPS 天线每个历元至少观测7 颗GPS 卫星。给出了基于星载GPS 的精密定轨流程,分别采用简化动力学方法和动态几何法进行了精密定轨实验。对于相位1mm 和3mm 随机误差的相位观测数据,简化动力学法和动态几何法定轨都能够实现厘米量级的径向精密定轨,几何法定轨精度略低于简化动力定轨。地球重力场模型是影响HY-2 卫星精密定轨的重要因素,本文对不同阶次的重力场模型EIGEN2、EGM96、TEG4 和GEMT3 进行了简化动力学定轨实验,高于50 阶次的重力场模型都能够实现厘米级径向精密定轨,主要原因在于大量的高精度星载GPS 观测数据和重力场模型精度的提高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭金运
秦建
孔巧丽
李国伟
关键词HY-2卫星   星载GPS   精密定轨   简化动力学法   动态几何法     
Abstract: The HY-2 satellite carrying a satellite-borne GPS receiver is the fi rst Chinese radar altimeter satellite, whose radial orbit determination precision must reach the centimeter level. Now HY-2 is in the test phase so that the observations are not openly released. In order to study the precise orbit determination precision and procedure for HY-2 based on the satelliteborne GPS technique, the satellite-borne GPS data are simulated in this paper. The HY-2 satellite-borne GPS antenna can receive at least seven GPS satellites each epoch, which can validate the GPS receiver and antenna design. What’s more, the precise orbit determination processing fl ow is given and precise orbit determination experiments are conducted using the HY-2-borne GPS data with both the reduced-dynamic method and the kinematic geometry method. With the 1 and 3 mm phase data random errors, the radial orbit determination precision can achieve the centimeter level using these two methods and the kinematic orbit accuracy is slightly lower than that of the reduced-dynamic orbit. The earth gravity field model is an important factor which seriously affects the precise orbit determination of altimeter satellites. The reduced-dynamic orbit determination experiments are made with different earth gravity field models, such as EIGEN2, EGM96, TEG4, and GEMT3. Using a large number of high precision satellite-borne GPS data, the HY-2 precise orbit determination can reach the centimeter level with commonly used earth gravity fi eld models up to above 50 degrees and orders.
Key wordsHY-2 satellite   satellite-borne GPS technique   precise orbit determination   reduced-dynamic method   kinematic geometry method   
收稿日期: 2011-11-08;
基金资助:

国家自然科学基金(40974004和40974016),中国科学院动力大地测量学重点实验室基金(L09-01),山东科技大学科研创新团队计划和研究生科技创新基金项目(YCA110403)联合资助。

引用本文:   
郭金运,秦建,孔巧丽等. 基于星载GPS的HY-2卫星高精度精密定轨模拟研究[J]. 应用地球物理, 2012, 9(1): 95-107.
GUO Jin-Yun,QIN Jian,KONG Qiao-Li et al. On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 95-107.
 
[1] Bertiger, W. I., Bar-Sever, T. E., Christensen, E. J., et al., 1994, GPS precise tracking of TOPEX/Poseidon: results
[2] and implications: Journal of Geophysical Research, 99, 24449 - 24464.
[3] Bock, H., 2003, Efficient methods for determining precise orbits of low earth orbiters using the global positioning
[4] system: PhD Thesis, Astronomical Institute, University of Berne, Berne.
[5] Guo, J. Y., Hwang, C. W., Hu, J. G., and Li, J. C., 2006a, Determination of CHAMP orbit from onboard GPS
[6] double-difference phase data with dynamic method: Geomatics and Information Science of Wuhan University,
[7] (3), 213 - 217.
[8] Guo, J. L., Zhao, Q. L., and Guo, D. Y., 2006b, Reducing the influence of gravity model error on precise orbit
[9] determination of low earth orbit satellites: Geomatics and Information Science of Wuhan University, 31(3), 293 - 296.
[10] Guo, J. Y., Hwang, C. W., Tseng, Z. P., Chang, X. T., and Han, Y. B., 2008, Research of geometry orbit
[11] determination of COSMIC satellite based on satelliteborne GPS zero-difference data: Progress in Natural
[12] Science, 18(1), 75 - 80.
[13] Guo, J. Y., Sun, J. L., Ju, X. L., and Shen, X. M., 2009, Solution of ambiguity and cycle slip for satellite-borne
[14] GPS phase data with wide-lane/narrow-lane method: Science of Surveying and Mapping, 34(6), 89 - 91.
[15] Habrich, H., 1999, Geodetic applications of the global navigation satellite system (GLONASS) and of
[16] GLONASS/GPS combinations: PhD Thesis, Astronomical Institute, University of Berne, Berne.
[17] Jäggi, A., Hugentobler, U., and Beutler, G., 2006, Pseudostochastic modeling techniques for low Earth orbits: Journal
[18] of Geodesy, 80(1), 47 - 60.
[19] Leick, A., 2004, GPS satellite surveying: John Wiley & Sons, Inc., Hoboken.
[20] Lemoine, F. G., Kenyon, S. C., Trimmer, R. G., et al., 1998, The development of the joint NASA GSFC and
[21] the National Imagery and Mapping Agency (NIMA) geopotential model EGM96: NASA Technical Paper
[22] NASA/TP - 1998 - 206861, GSFC, Greenbelt.
[23] Lerch, F. J., Nerem, R. S., Putney, B. H., et al., 1992, Geopotential models of the Earth from satellite tracking,
[24] altimeter and surface gravity observation: GEM-T3 and GEM - T3S: Journal of Geophysical Research, 99, 2815
[25] - 2839.
[26] Liu, J. N., Zhao, Q. L., and Zhang, X. H., 2004, Geometric orbit determination of CHAMP satellite and dynamic
[27] models compensation during orbit smoothing: Geomatics and Information Science of Wuhan University, 29(1), 1 - 6.
[28] Mccarthy, D. D., 1996, IERS conventions (1996): IERS Technical Note 21, Observatoire de Paris, Paris.
[29] Mccarthy, D. D., 2003, IERS conventions (2003): IERS Technical Note 32, Observatoire de Paris, Paris.
[30] Melbourne, W. G., 1985, The case for ranging in GPS based geodetic systems: in Goad, C. (ed.) Proceedings 1st
[31] International Symposium on Precise Positioning with the Global Positioning System, Rochville, Maryland, 373 - 386.
[32] Montenbruck, O., and Gill, E., 2000, Satellite orbits models, methods and applications: Springer-Verlag, Berlin.
[33] Nerem, R. S., Lerch, F. J., Marshall, J. A., et al., 1994, Gravity model development for TOPEX/Poseidon:
[34] Joint gravity models 1 and 2: Journal of Geophysical Research, 99(C12), 24421 - 24447.
[35] Nouël, F., Berthias, J. P., Deleuze, M., et al., 1994, Precise centre national d’Etudes spatials orbits for TOPEX/
[36] Poseidon: Is reaching 2cm still a challenge: Journal of Geophysical Research, 99(C12), 24405 - 24419.
[37] Pope, A. J., 1976, The statistics of residuals and the detection of outliers: NOAA Technical Report NOS - 65
[38] - NGS - 1, NOAA.
[39] Qin, J., Guo, J. Y., Kong, Q. L., and Li, G. W., 2011, Precise orbit determination of CHAMP with reduceddynamic
[40] method based on satellite-borne GPS technique: GNSS World of China, 36(5), 41 - 45.
[41] Reigber, Ch., Schwintzer, P., Neumayer, K.H., et al., 2003, The CHAMP-only earth gravity field model EIGEN - 2:
[42] Adv Space Res, 31(8), 1883 - 1888.
[43] Schutz, B. E., Tapley, B. D., Abusali, P. A. M., and Rim, H. J., 1991, Dynamic orbit determination using GPS
[44] measurements from TOPEX/Poseidon: Geophys Res Lett, 21, 2179 - 2182.
[45] Seeber, G., 1993, Satellite geodesy: Walter de Gruyter & Co., Berlin.
[46] Standish, E. M., 1990, The observational basis for JPL’s DE200, the planetary ephemerides of the astronomical
[47] almanac: Astronomy and Astrophysics, 233, 252 - 271.
[48] Scaron;vehla, D., and Rothacher, M., 2002, Kinematic orbit determination of LEOs based on zero or double-difference
[49] algorithms using simulated and real SST data: in Adam, J., Schwarz, K.-P. (eds.), Vistas for Geodesy in the New
[50] Millennium, IAG Symposia, Springer, 125, 322 - 328.
[51] Scaron;vehla, D., and Rothcaher, M., 2003a, Kinematic and reduced-dynamic precise orbit determination of CHAMP
[52] satellite over one year using space borne GPS phase zerodifferences only: EGS-AGU-EUG Joint Assembly, France.
[53] Scaron;vehla, D., and Rothacher, M., 2003b, Kinematic and reduced-dynamic precise orbit determination of low earth
[54] orbiters: Advances in Geosciences, 1, 47 - 56.
[55] Tapley, B. D., Shum, C. K., Yuan, D. N., et al., 1991, The University of Texas earth gravity field model: IUGG
[56] XX General Assembly, IAG Symp. G3, Gravity Field Determination from Space and Airborne Measurements,
[57] Vienna, Austria, 12 - 24.
[58] Tapley, B. D., Ries, J. C., Davis, G. W., et al., 1994, Precise orbit determination for TOPEX/Poseidon: Journal of
[59] Geophysical Research, 99(C12), 24383 - 24404.
[60] Tapley, B. D., Schutz, B. E., and Born, G. H., 2004, Statistical orbit determination: Elsevier Academic Press, Burlington.
[61] Wang, C., Hu, X. G., and Guo, P., 2011, Precision orbit determination of LEO satellites using the software
[62] Berenese 5.0: Astronomical Research & Technology, 8(3), 255 - 261.
[63] Wübbena, G., 1985, Software development for geodetic positioning with GPS using TI4100 code and carrier
[64] measurement: in Goad, C., Ed., Proceedings 1st International Symposium on Precise Positioning with
[65] the Global Positioning System: Rochville University, Maryland, 403 - 412.
[66] Zhao, Q. L., Liu, J. N., Ge, M. R., Shi, C., and Du, R. L., 2005, Precise orbits determination of GPS and CHAMP
[67] satellite with PANDA software: Journal of Geodesy and Geodynamics, 25(2), 113 - 116.
[68] Zheng, Z. Y., Lu, X. S., and Hwang, C., 2008, Spaceborne GPS phase undifferenced kinematic LEO POD
[69] and its precision analysis: Journal of Spacecraft TT&C Technology, 27(2), 74 - 79.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司