APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 382-392    DOI: 10.1007/s11770-018-0671-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
日长变化的多种频谱分析方法比较研究
林海博1,赵娟1
1. 北京师范大学天文学系,北京 100875
The comparison of different spectrum analysis methods for LOD time series
Lin Hai-Bo1 and Zhao Juan1
1. Department of Astronomy, Beijing Normal University, Beijing 100875, China.
 全文: PDF (751 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地球自转速率的研究是天文地球动力学和自然灾害的主要研究内容,其变化影响日长(LOD)及人类的生产生活,而利用不同频谱分析方法均可以提取LOD的主要周期成分。为了研究非等间距时间序列的有效观测数据量及样条插值分别对不同频谱方法分析结果的影响程度,本文采用最大熵法(Maximum Entropy Method,简称MEM)、Lomb算法(简称LOMB)、相位弥散法(Phase Dispersion Minimization,简称PDM)对LOD进行频谱分析。分别随机扣除月平均日长数据序列(LODM)样本数的1/4、1/3和1/2,可构成非等间距日长变化数据序列(LODMD),再进行LOMB和PDM的频谱分析,与样条插值后的新序列(LODMDN)进行MEM、LOMB、PDM频谱分析结果的比较。结果表明:1)对于LODM的频率结果,MEM的双峰总维持在0.1660和0.0840月-1,而LOMB和PDM的峰在0.166和0.083月-1;2)对于LOD的两个主要周期,有效观测数据量(超过等间隔应有样本数的一半)或样条插值对于三种频谱分析方法的结果几乎没有影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词LOD   MEM   LOMB   PDM   非等间距     
Abstract: The variations in the Earth’s rotation are important to space dynamic theory and natural disasters because they affect the length-of-day (LOD) and consequently human lives. We use maximum entropy method (MEM), Lomb method (LOMB), and phase dispersion minimization (PDM) to determine the natural periods of equally spaced LOD time series. We transform the observational monthly LOD time series (LODM) to unequally sampled series (LODMD) by removing every fourth, third, and half of the total samples. We also apply spline interpolation to LODMD to yield equally spaced time series (LODMDN). The results suggest that regardless of the time series, the MEM frequency is 0.1660 month−1 and 0.0840 month−1, whereas LOMB and PDM yield 0.166 month−1 and 0.083 month−1, respectively. Furthermore, missing data that are less than half of the total data or spline interpolation do not affect the analysis. For the amplitude, neither missing data nor spline interpolation affect the analysis.
Key wordsLOD   MEM   LOMB   PDM   Unequally   
收稿日期: 2017-06-16;
基金资助:

本研究由国家自然科学基金项目(编号:11203004)和中央高校基本科研基金联合资助。

引用本文:   
. 日长变化的多种频谱分析方法比较研究[J]. 应用地球物理, 2018, 15(3-4): 382-392.
. The comparison of different spectrum analysis methods for LOD time series[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 382-392.
 
[1] An, T., Wang, J., Lu, X., Lao, B., Wei, Y., Dong, D., Lu, Y., and Wu, X., 2016, Review of Periodicity Searching Algorithms of Astronomical Light Curves: Progress in Astronomy, 34(1), 74−93.
[2] Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. A.,1983, Atmospheric angular momentum fluctuations, length-of-day changes and polar motion: Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 387, 31−73.
[3] Ding, Y.-R., 1998, Astronomical data processing method: Nanjing, Nanjing University, 190−214.
[4] Dong, D., Gross, R. S., and Dickey, J. O., 1996, Seasonal variations of the Earth’s gravitational field: an analysis of atmospheric pressure, ocean tidal and surface water excitation: Geophysical Research Letters, 23, 725−740.
[5] Duan, P., Liu, G., Hu, X., Sun, Y., and Li, H., 2017, Possible damping model of the 6 year oscillation signal in length of day: Physics of the Earth and Planetary Interiors, 265, 35−42.
[6] Escapa, A., Getino, J., Ferrándiz, J. M., and Baenas, T., 2017, Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession: Astronomy & Astrophysics, 604(A92), 1−13.
[7] Foster, G., 1996, Wavelets for Period Analysis of Unevenly Sampled Time Series: The Astronomical Journal, 112(4), 1709−1729.
[8] Hao, L., and Zhang, C., 2017, Discussion on the space geodetic measurement method for earth rotation parameters: Science and Technology and Innovation, 2017(2), 7−8.
[9] Hide, R. and Dickey, K. O., 1991, Earth’s variable rotation: Science, 253, 629−637.
[10] Kang, G., Bai, C., and Gao, G., 2008, Periodical characteristics of the geomagnetic secular variation and length-of-day variation: Chinese Journal of Geophysics, 51(2), 369−375.
[11] Lambeck, K. and Cazenave A., 1976, Long term variations in the length of day and climate: Geophysical Journal of the Royal Astronomical Society, 46, 555−573.
[12] Li, Y.-X. and Zhao, J., 2012, Maximum Entropy Spectrum Analysis of Unequally Spaced ΔLOD, Journal of Beijing Normal University (Natural Science), 48(1), 29−32.
[13] Liao, D., 2000, Main excitation sources of ΔLOD on inter-annual time scale: Acta Astronomica Sinica, 41(2), 139−147.
[14] Lomb, N. R., 1976, Least-Squares Frequency Analysis of Unequally Spaced Data: Astrophysics and Space Science, 39, 447−462.
[15] Lu, J. C., Wang, J. Y., An, T., Lin, J. M., and Qiu, H. B. 2012, Periodic radio variability in NRAO 530: phase dispersion minimization analysis: Research in Astronomy and Astrophysics, 12, 643−650.
[16] Ma, L., Liao, D., and Han, Y., 2006, Atmospheric and oceanic excitations to LOD change on quasi-biennial time scales: Chinese Journal of Astronomy and Astrophysics, 6(6), 759−768.
[17] Ma, L., and Han, Y., 2006, Atmospheric excitation of time variable length-of-day on seasonal scales: Chinese Journal of Astronomy and Astrophysics, 6(1), 120−124.
[18] Ma, L., Han, Y., and Liao, D., 2008, 50-day oscillation of length-of-day change: Earth Moon Planets, 103(1−2),1−8.
[19] Milyukov, V., Mironov, A., Kravchuk, V., Amoruso, A., and Crescentini, L., 2012, Short-period variations of the Earth’s rotation rate and global deformation processes in the Lithosphere: EGU General Assembly Conference Abstracts, 14, 3392.
[20] Na, S.-H., Cho, J., Kim, T.-H, Seo, K., Youm, K., Yoo, S.-M., Choi, B., and Yoon, H., 2016, Changes in the Earth’s Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers: Journal of Astronomy and Space Sciences, 33(4), 295−304.
[21] Naeeni, M. R., and Saheb, R. A., 2017, Study of the effects of large earthquakes on the excitation of polar motion and the change in length of day: Journal of the Earth and Space Physics, 43(1), 33−51.
[22] Narayan, R., and Nityananda, R., 1986, Maximum entropy image restoration in astronomy: Annual review of astronomy and astrophysics, 24, 127−170.
[23] Nemec, A. F. L., and Nemec, J. M., 1985, A test of significance for periods derived using phase-dispersion-minimization techniques: The Astronomical Journal, 90, 2317−2320.
[24] Nyambuya, G. G., 2014, Secular Increase in the Earth’s LOD Strongly implies that the Earth Might Be Expanding Radially on a Global Scale: International Journal of Astronomy and Astrophysics, 4(1), 244−249.
[25] Pais, A., and Hulot, G., 2000, Length of day decade variations, torsional oscillations and inner core super rotation - evidence from recovered core surface zonal flows: Physics of the Earth & Planetary Interiors, 118(3), 291−316.
[26] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77: Cambridge University Press, UK, 559−570.
[27] Scargle, J. D., 1982, Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data: Astrophysics Journey, 263, 835−853.
[28] Schindelegger, M., Salstein, D., Einšpigel, D., and Mayerhofer, C., 2017, Diurnal atmosphere-ocean signals in Earth's rotation rate and a possible modulation through ENSO: Geophysical Research Letters, 44(6), 2755−2762.
[29] Scrutton, C. T., and Hipkin, R. G., 1973, Long-term changes in the rotation rate of the Earth: Earth Science Reviews, 9(3), 259−274.
[30] Singh, Y. P., and Badruddin, 2014, Prominent short-, mid-, and long-term periodicities in solar and geomagnetic activity - Wavelet analysis: Planetary and Space Science, 96, 120-124.
[31] Stellingwerf, R. F., 1978, Period determination using phase dispersion minimization: Astrophysical Journal, 224, 953−960.
[32] Zechmeister, M., and Kürster, M., 2009, The generalised Lomb-Scargle periodogram A new formalism for the floating-mean and Keplerian periodgrams: Astronomy and Astrophysics, 496, 577−584.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司