APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 393-400    DOI: 10.1007/s11770-018-0700-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于单偶极混合测量模式的反射波测井方法研究
宫昊1,2,3,4,陈浩2,3,何晓2,苏畅2,王秀明2,3,王柏村1,4,严晓辉4
1.清华大学,北京市海淀区清华园 100084
2. 中国科学院声学研究所,声场与声信息国家重点实验室;北京市海洋深部钻探测量工程技术中心,北京市海淀区 100190
3. 中国科学院大学,北京市石景山区 100049
4. 中国工程院,北京市西城区 100088
Modeling and inversions  of acoustic  reflection logging imaging using the combined monopole–dipole measurement mode
Gong Hao1,2,3,4, Chen Hao2,3, He Xiao2, Su Chang2, Wang Xiu-Ming2,3, Wang Bai-Cun1,4, and Yan Xiao-Hui4
1. Tsinghua University, Beijing 100084, China.
2. State Key Laboratory of Acoustics, Beijing Engineering Research Center of Deep Drilling Exploration and Measurement, Institute of Acoustics, Beijing 100190, China.
3. University of Chinese Academy of Sciences, Beijing 100049, China.
4. Chinese Academy of Engineering, Beijing 100088, China.
 全文: PDF (693 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 反射信号难以提取与反演结果的方位不确定性是声反射成像测井技术中存在的两个主要问题。本文中,我们从理论分析和数值模拟两个方面研究并证实了单偶极混合测量模式在提高反射信号信噪比和消除方位不确定性方面的特性。首先提出一种优化的成像处理流程,将单偶极混合测井数据与常规测井数据联合偏移,进而可以有效消除方位不确定性。更重要的是,利用单偶极混合测量模式得到的测井数据中,沿着井轴传播的高幅度井中直达波在数据采集阶段被有效压制。这意味着,在滤波之前,单偶极混合测井数据中反射信号已经拥有了较高的信噪比。基于这一发现,我们可以首先对单偶极混合测井数据进行偏移成像,并根据偏移结果计算得到探测目标反射体对应的时距曲线。获知了时距曲线中提供的到时信息后,常规测井数据中反射信号的提取效果亦将会得到显著提升。总之,将单偶极混合测量模式应用于单井声反射成像测井中,可以提高成像的准确性与可靠性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词声反射成像测井   方位不确定性   多分量   波场分离     
Abstract: In this paper, we theoretically and numerically study a combined monopole–dipole measurement mode to show its capability to overcome the issues encountered in conventional single-well imaging, i.e., the low signal-to-noise ratio of the reflections and azimuth ambiguity. First, the azimuth ambiguity, which exists extensively in conventional single-well imaging, is solved with an improved imaging procedure using combined monopole–dipole logging data in addition to conventional logging data. Furthermore, we demonstrate that the direct waves propagating along the boreholes with strong energy, can be effectively eliminated with the proposed combined monopole–dipole measurement mode. The reflections are therefore predominant in the combined monopole–dipole data even before the signals are filtered; thus, the reflections’ arrival times in each receiver are identified, which may help minimize the difficulties in filtering conventional logging data. The optimized processing flow of the combined measurement mode logging image is given in this paper. The proposed combined monopole–dipole measurement mode may improve the accuracy of single-well imaging.
Key wordsSingle well   imaging   azimuth ambiguity   multicomponent   wave separation   
收稿日期: 2017-03-13;
基金资助:

本研究由国家自然科学基金(编号:11574347、11374322、11134011、11734017和91630308)和中国石油科技创新基金项目(编号:2016D-5007-0304)资助。

引用本文:   
. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
. Modeling and inversions  of acoustic  reflection logging imaging using the combined monopole–dipole measurement mode[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 393-400.
 
[1] Che, X. H., Qiao, W. X., Ju, X. D., Wu, J. P., and Men, B. Y., 2017, Experimental study on the performance of an azimuthal acoustic receiver sonde for a downhole tool: Geophysical Prospecting, 65(1), 1-12.
[2] Coates, R., Kane, M., Chang, C., Esmersoy, C., Fukuhara, M., and Yamamoto, H., 2000, Single-well sonic imaging: High-definition reservoir cross-sections from horizontal wells: SPE/CIM International Conference on Horizontal Well Technology, Society of Petroleum Engineers.
[3] Esmersoy, C., Chang, C., Kane, M., Coates, R., Tichelaar, B., and Quint, E., 1998, Acoustic imaging of reservoir structure from a horizontal well: The Leading Edge, 17, 940-946.
[4] Gong, H., Chen, H., He, X., and Wang, X., 2015, Eliminating the azimuth ambiguity in single-well imaging using 3C sonic data: Geophysics, 80(1), A13-A17.
[5] Haldorsen, J., Voskamp, A., Thorsen, R., Vissapragada, B., Williams, S., and Fejerskov, M., 2006, Borehole acoustic reflection survey for high resolution imaging: SEG Annual Meeting, Society of Exploration Geophysicists.
[6] Hornby, B. E., 1989, Imaging of near-borehole structure using full-waveform sonic data: Geophysics, 54, 747-757.
[7] Kurkjian, A. L., and Chang, S. K., 1986, Acoustic multipole sources in fluid-filled boreholes: Geophysics, 51(1), 148-163.
[8] Liu, Q. H., Schoen, E., Daube, F., Randall, C., Liu, H. L., and Lee, P., 1996, A three-dimensional finite difference simulation of sonic logging: The Journal of the Acoustical Society of America, 100(1), 72-79.
[9] Li, J., Tao, G., Zhang, K., Wang, B., and Wang, H., 2014, An effective data processing flow for the acoustic reflection image logging: Geophysical Prospecting, 62(3), 530-539.
[10] Li, C., and Yue, W., 2015, High-resolution adaptive beamforming for borehole acoustic reflection imaging,Geophysics, 80(6), D565-D574.
[11] Sun, R., McMechan, G. A., Lee, C. S., Chow, J., and Chen, C. H., 2006, Prestack scalar reverse-time depth migration of 3D elastic seismic data: Geophysics, 71(5), S199-S207.
[12] Tang, X. M., 2004, Imaging near-borehole structure using directional acoustic-wave measurement: Geophysics, 69, 1378-1386.
[13] Tang, X. M., Zheng, Y., and Patterson, D., 2007, Processing array acoustic-logging data to image near-borehole geologic structures: Geophysics, 72(2), E87-E97.
[14] Tang, X. M., and Patterson, D., 2009, Single-well S-wave imaging using multicomponent dipole acoustic-log data: Geophysics, 74(6), A211-A223.
[15] Wang, B., Zhang, K., Tao, G., Liu, H., and Zhang, X. L., 2018, Acoustic reflection well logging modeling in the frequency domain with a hybrid PML: Applied Geophysics, 15(1), 35-45.
[16] Wang, H., Tao, G., Zhang, K., and Li, J. X., 2012, Numerical Simulations for Acoustic Reflection Imaging with FDM and FEM: 74th EAGE Conference and Exhibition incorporating EUROPEC 2012.
[17] Wang, Z., Hu, H., and Yang, Y., 2015, Reciprocity relations for the elastodynamic fields generated by multipole sources in a fluid-solid configuration: Geophysical Journal International, 203(2), 883-892.
[18] Wei, Z. T., and Tang, X. M., 2012, Numerical simulation of radiation, reflection, and reception of elastic waves from a borehole dipole source: Geophysics, 77(6), D253-D261.
[19] Zhang, Y. D., and Hu, H., 2014, A technique to eliminate the azimuth ambiguity in single-well imaging: Geophysics, 79(6), D409-D416.
[20] Zhang, G., Li, N., Guo, H. W., Wu, H. L., and Luo, C., 2015, Fracture identification based on remote detection acoustic reflection logging: Applied Geophysics, 12(4), 473-481.
[1] 蔡中正, 韩立国, 许卓. 基于波场分离归一化成像条件的被动源数据多次波逆时偏移成像*[J]. 应用地球物理, 2019, 16(3): 338-348.
[2] 吴潇,刘洋,王勇,徐世刚,贾万丽. 一种改进的转换波快速成像方法研究[J]. 应用地球物理, 2019, 16(2): 173-194.
[3] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[4] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[5] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[6] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[7] 吴娟, 陈小宏, 白敏, 刘国昌. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
[8] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[9] 陈婷, 何兵寿. 基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件[J]. 应用地球物理, 2014, 11(2): 158-166.
[10] 王璞, 胡天跃. 转换波AVO近似及其在PP/PS联合反演中的应用[J]. 应用地球物理, 2011, 8(3): 189-196.
[11] 杜启振, 孙瑞艳, 秦童, 朱钇同, 毕丽飞. 多分量联合逆时偏移最佳匹配层吸收边界[J]. 应用地球物理, 2010, 7(2): 166-173.
[12] 芦俊, 王赟, 杨春颖. 瞬时极化滤波法压制面波[J]. 应用地球物理, 2010, 7(1): 88-97.
[13] 芦俊, 王赟, 杨春颖. 瞬时极化滤波法压制面波[J]. 应用地球物理, 2010, 6(1): 88-97.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司