APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 26-34    DOI: 10.1007/s11770-018-0661-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
页岩压裂过程的连续时域电磁法动态监测试验
严良俊1,陈孝雄2,唐浩3,谢兴兵1,周磊1,王中兴4,胡文宝1
1. 湖北省非常规油气协同创新中心(长江大学)
2. 中石化石油工程地球物理有限公司江汉分公司
3. 中国石油川庆钻探地球物理勘探公司
4. 中国科学院地质与地球物理研究所
Continuous TDEM for monitoring shale hydraulic fracturing
Yan Liang-Jun1,  Chen Xiao-Xiong2, Tang Hao3, Xie Xing-Bing1, Zhou Lei1, Hu Wen-Bao1, and Wang Zhong-Xin4
1. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China.
2. Jianghan Division, Petroleum Geophysics Engineering Company, SINOPEC, Wuhan 430040, China.
3. Geophysical Prospecting Company, CCDC, Chengdu, 610213, China.
4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 全文: PDF (703 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 页岩气开发水压过程中监测裂缝的空间展布对页岩气稳产高产并指导压裂至关重要。常规的时移地震、井间地震及微震监测不但成本高,监测效果显示周期长,且不能直观展示压裂液的平面和空间形态的动态变化。本试验研究首先对压裂液及压裂液充填的岩样进行了电性测试与分析,发现其具有极低阻与高极化特征,表明可控源电磁法进行页岩压裂过程的动态监测有着良好的电性基础。其次,基于试验区井震资料建立的地电模型,通过改变储层电性进行正演模拟,研究了电场分量的变化规律,提出了瞬变电磁法动态监测的归一化残差电阻率成像方法。最后,以时移电磁长偏移距瞬变电磁阵列法为手段,在我国南方涪陵页岩开发区水平压裂井上进行了连续时域电磁法动态监测试验。通过参研单位高度协同,采取了大功率与数百道阵列观测方式,获取了埋深在2800米处三个压裂段上方地面224个物理点近9个小时的电场时间序列数据。处理结果表明,该方法能有效观测到压裂液引起的电场信号变化。通过残差处理与电阻率成像,获取了储层改造过程的动态图像,结合地震、测井与水平井位的标定,解释了压裂液平面和空间展布,其结果对页岩气有效压裂与安全开采有重要指导意义,展示出连续时域电磁法在页岩气开发的压裂监测中有着广阔的应用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词页岩压裂   电阻率   时移瞬变电磁   三维成像   动态监测     
Abstract: Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time-consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.
Key wordsShale fracturing   resistivity   time lapse   3D imaging   continuous monitoring   
收稿日期: 2017-07-13;
基金资助:

本研究由国家自然科学基金项目(编号:U1562109和41774082)、国家重点研发计划(编号:2016ZX05004和2016YFC0601104)和中石油科学研究与技术开发项目(编号:2017D-5006-16)联合资助。

引用本文:   
. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
. Continuous TDEM for monitoring shale hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2018, 15(1): 26-34.
 
[1] Albaric, J., Oye, V., Langet, N., Hasting, M., Lecomte, I., Iranpour, K., Messeiller, M., and Reid, P., 2014. Monitoring of induced seismicity during the first geothermal reservoir stimulation at Paralana, Australia:, Geothermics, 52, 120-131.
[2] Abdelfettah, Y., Sailhac, E., and Schill, H., P.D., 2016. Continuous MT monitoring for small fluid injection volume at Rittershoffen Geophysical Project, northern Alsace France: 23rd Electromagnetic Induction Workshop, Chiang Mai, Thailand.
[3] He, Z., Hu, Z., Gao, Y., He, L., Meng, C., and Yang, L., 2015. Field test of monitoring gas reservoir development using time-lapse continuous electromagnetic profile method: Geophysics 80(2), WA127-WA134.
[4] Hoversten, G. M., Commer, M., Haber, E., and Schwarzbach, C., 2015. Hydro-frac monitoring using ground time domain electromagnetics: Geophysical Prospecting, 63, 1508-1526.
[5] Hoversten, G. M., Schwarzbach, C., Haber, E., Belliveau, P., and Shekhtman, R., 2017, Borehole to surface electromagnetic monitoring of hydraulic fractures: 6th International Symposium on Three-Dimensional Electromagnetics. Berkeley, California, USA, March 28-30.
[6] Hu, W., Yan, L., Su, Z., Zheng, R. and Strack, K, 2008. Array TEM Sounding and Application for Reservoir Monitoring:. 78th Ann. Internat. Mtg, SEG, Expanded Abstracts,.27(1), 634-638
[7] Macnae, J., 1987, Imaging quasi-layered conductive structures by simple processing of transient electromagnetic data: Geophysics, 52(4), 545-554.
[8] Maxwell, S. E., Cho, D., Pope T., Jones, M., and Leonard, J., 2011, Enhanced reservoir characterization using hydraulic fracture microseismicity. Paper SPE140449 presented at the SPE Annual Technical Conference and Exhibition, Texas, USA, 24-26 January. 2011.
[9] Orange, A., Key, K., and Constable, S., 2009, The feasibility of reservoir monitoring using time-lapse marine CSEM: Geophysics, 74(2), F21-f29.
[10] Peacock, J.R., Thiel, S., Reid, p., and Heinson, G., 2012. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system: Geophysical Research Letters, 39(18), L18.
[11] Peacock, J., Thiel, S., Heinson, G., and Reid, P., 2013. Time-lapse magnetotelluric monitoring of an enhanced geothermal system: Geophysics 78(3), B121-B130.
[12] Peng R.H., Hu, X.Y., Liu, Y.X., and He Z.X., 2012. The feasibility study of time-lapse two dimensional magnetotelluric for reservoir monitoring: Chinese Geophysical Society, 2012,112.
[13] Raiche, A. P., and Gallagher, R. G., 1985. Apparent resistivity and diffusion velocity: Geophysics, 50, 1628-1633.
[14] Rees, N., Heinson, G., and Krieger, L., 2016. Magnetotelluric monitoring of coal seam gas depressurization: Geophysics, 81(6), E424-E431.
[15] Rees, N., Carter, S., Heinson, G., and Krieger, L. 2016, Monitoring shale gas resources in the Cooper Basin using magnetotellurics: Geophysics, 81(6), A13-A16
[16] Strack, K. M., 1992, Exploration with Deep Transient, Electromagnetics: Elsevier, 373 pp.
[17] Streich, R., 2016. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land: Surveys in Geophysics, 37(1), 47-80.
[18] Weckmann, U., Ritter, O., Haak, V., 2003. Images of the magnetoteluric apparent resistivity tensor: Geophysical Journal International, 155(2), 456-468.
[19] Xie, X.B., Zhou, L., 2016. The application of long offset transient electromagnetic method in the monitoring of residual oil: Oil Geophysical Prospecting, 51(3), 606-612.
[20] Xu, D., Hu, X.Y., Shan, C.L. etc., 2016. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography: Applied Geophysics, 13(1), 1-12.
[21] Yan, L.J., Yang, S.F., Hu, W.B., 2001. Electromagnetic prospecting method and its application in carbonate area of South China: Petroleum Industry Press, Beijing.
[1] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[2] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[3] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[4] 郭志华,宋延杰,唐晓敏,王超. 基于差分方程和通用阿尔奇方程的含黄铁矿混合泥质砂岩电阻率模型[J]. 应用地球物理, 2018, 15(2): 208-221.
[5] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[6] 杨学立,李博,彭传圣,杨洋. 广域电磁法在我国南方海相页岩气勘探中的应用[J]. 应用地球物理, 2017, 14(3): 441-448.
[7] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[8] 杨海燕,李锋平,岳建华,郭福生,刘旭华,张华. 瞬变电磁法圆锥型场源特征与电感效应[J]. 应用地球物理, 2017, 14(1): 165-174.
[9] 白泽,谭茂金,张福莱. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
[10] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[11] 张军华,李军,肖文,谭明友,张云银,崔世凌,曲志鹏. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
[12] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
[13] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[14] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[15] 徐冬, 胡祥云, 单春玲, 李睿恒. 西南山区典型滑坡体时移电阻率动态监测试验研究[J]. 应用地球物理, 2016, 13(1): 1-12.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司