APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 11-25    DOI: 10.1007/s11770-018-0659-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究
张博1,殷长春1,刘云鹤1,任秀艳1,齐彦福2,蔡晶1
1. 吉林大学地球探测科学与技术学院,长春 130026
2.长安大学地质工程与测绘学院,西安 710054
3D forward modeling and response analysis for marine CSEMs towed by two ships
Zhang Bo1, Yin Chang-Chun1, Liu Yun-He1, Ren Xiu-Yan1, Qi Yan-Fu2, and Cai Jing1
1. College of Geo-Exploration Sciences and Technology, Jilin University, Changchun 130026, China.
2. School of Geology and Survey Engineering, Changan University, Xi’an 710054, China.
 全文: PDF (2002 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 双船拖曳式海洋电磁系统是近年提出的一种新型海洋电磁勘探系统。与传统海洋电磁系统相比,该系统使用两艘作业船分别拖曳接收机和发射机工作,无需事先在海底铺设接收机,且发射机与接收机的相对位置关系更加灵活多样,采集电磁数据能够包含更为丰富的海底介质分布信息。本文针对双船拖曳海洋电磁系统开发了面向目标自适应可控源海洋电磁三维正演算法并总结了该系统四种装置(同线、旁线、同心扫面、方位扫面)的响应特征。考虑到起伏海底地形普遍存在且对海洋电磁响应影响较大,本文采用基于非结构网格的矢量有限元对海洋电磁响应进行模拟。为了充分满足双船拖曳系统对正演算法的要求,本文针对不同发射源位置采用独立网格剖分并进行响应计算。为了得到更为合理的网格剖分、提高计算精度,本文针对海洋电磁正演问题基于自适应算法研发了近源/远源分区网格加密技术。通过将计算结果与半空间模型半解析解以及已发表的三维模型结果进行对比,验证了本文算法的精度。对海洋电磁系统四种不同装置的正演模拟结果表明,双船拖曳式海洋电磁勘探系统较之于传统半托曳式海洋电磁系统能够提供更多的地质信息。本文研究内容对双船拖曳式海洋电磁勘查系统响应异常识别具有指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词海洋可控源电磁   双船拖曳系统   三维   自适应非结构正演   起伏海底地形     
Abstract: A dual-ship-towed marine electromagnetic (EM) system is a new marine exploration technology recently being developed in China. Compared with traditional marine EM systems, the new system tows the transmitters and receivers using two ships, rendering it unnecessary to position EM receivers at the seafloor in advance. This makes the system more flexible, allowing for different configurations (e.g., in-line, broadside, and azimuthal and concentric scanning) that can produce more detailed underwater structural information. We develop a three-dimensional goal-oriented adaptive forward modeling method for the new marine EM system and analyze the responses for four survey configurations. Ocean-bottom topography has a strong effect on the marine EM responses; thus, we develop a forward modeling algorithm based on the finite-element method and unstructured grids. To satisfy the requirements for modeling the moving transmitters of a dual-ship-towed EM system, we use a single mesh for each of the transmitter locations. This mitigates the mesh complexity by refining the grids near the transmitters and minimizes the computational cost. To generate a rational mesh while maintaining the accuracy for single transmitter, we develop a goal-oriented adaptive method with separate mesh refinements for areas around the transmitting source and those far away. To test the modeling algorithm and accuracy, we compare the EM responses calculated by the proposed algorithm and semi-analytical results and from published sources. Furthermore, by analyzing the EM responses for four survey configurations, we are confirm that compared with traditional marine EM systems with only in-line array, a dual-ship-towed marine system can collect more data.
Key wordsmarine   electromagnetics   dual-ship-towing   seafloor   modeling   
收稿日期: 2017-12-13;
基金资助:

本研究由国家重点研发计划重点专项(编号:2016YFC0303100和2017YFC0601900)、国家自然科学基金重点项目(编号:41530320)和面上项目(编号:41774125)资助。

引用本文:   
. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
. 3D forward modeling and response analysis for marine CSEMs towed by two ships[J]. APPLIED GEOPHYSICS, 2018, 15(1): 11-25.
 
[1] Bakr, S. A., and Mannseth, T., 2009, Feasibility of simplified integral equation modeling of low- frequency marine CSEM with a resistive target: Geophysics, 74(5), F107-F117.
[2] Ben, F., Liu, Y. H., Huang, W., and Xu, C., 2016, MCSEM responses for anisotropic media in shallow water: Journal of Jilin University (Earth Science), 46(2), 581-593..
[3] Constable, S., and Weiss, C. J., 2006, Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling: Geophysics, 71(2), G43-G51.
[4] Jin, J. M., 1998, Electromagnetic Finite-Element Method (in Chinese). Xi’an: Xidian University Press.
[5] Mitsuhata, Y., 2000, 2-D electromagnetic modeling by finite-element method with a dipole source and topography: Geophysics, 65(2), 465-475.
[6] Newman, G. A., and Alumbaugh, D. L., 1995, Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences: Geophysical Prospecting, 43, 1021-1042.
[7] Newman, G. A., Commer, M., and Carazzone J. J., 2010, Imaging CSEM data in the presence of electrical anisotropy: Geophysics, 75(2), F51-F61.
[8] Persova, M. G., Soloveichik, Y. G., Domnikov, P. A., et al., 2015, Electromagnetic field analysis in the marine CSEM detection of homogeneous and inhomogeneous hydrocarbon 3D reservoirs: Journal of Applied Geophysics, 119, 147-155.
[9] Ren, Z., Kalscheuer, T., Greenhalgh, S., and Maurer, H., 2013, A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modeling: Geophys. J. Int., 194, 700-718.
[10] Ryhove, S. K., and Mittet, R., 2014, 3D marine magnetotelluric modeling and inversion with the finite-difference time-domain method: Geophysics, 79(6), E269-E286.
[11] Sasaki, Y. and Meju, M. A., 2009, Useful characteristics of shallow and deep marine CSEM responses inferred from 3D finite-difference modeling: Geophysics, 74(5), F67-F76.
[12] Weidelt, P., 2007, Guided waves in marine CSEM: Geophys. J. Int., 171, 153-176.
[13] Yang, B., Xu, Y. X., He, Z. X., et al., 2012, 3D frequency-domain modeling of marine controlled source electromagnetic responses with topography using finite volume method: Chinese J. Geophys. (in Chinese), 55(4), 1390-1399.
[14] Yin, C. C., Ben, F., Liu, Y. H., et al., 2014, MCSEM 3D modeling of arbitrarily anisotropic media: Chinese J. Geophys. (in Chinese), 57(12), 4110- 4122.
[15] Zhao, L. X., Geng, J. H., Zhang, S. Y., et al., 2008, 1-D Controlled source electromagnetic forward modeling for marine gas hydrates studies: Applied Geophysics, 5(2), 121-126.
[16] Zhdanov, M. S., Lee, S. K., and Yoshioka, K., 2006, Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity: Geophysics, 71(6), G333-G345.
[1] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[4] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[5] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[6] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[7] 王书明,底青云,王若,王雪梅,苏晓璐,王鹏飞. MCSEM利用异常场主部分解消除海水层影响[J]. 应用地球物理, 2018, 15(1): 3-10.
[8] 李静和,何展翔,徐义贤. 油气藏开发监测中地-井三维电磁法的数值模拟研究[J]. 应用地球物理, 2017, 14(4): 559-569.
[9] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[10] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[11] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[12] 张华,陈小宏,张落毅. 基于曲波变换的三维地震数据同时重建和噪声压制[J]. 应用地球物理, 2017, 14(1): 87-95.
[13] 邢逢源,杨锴,薛冬,汪小将,陈宝书. 基于结构张量算法的南海深水三维立体层析反演实例研究[J]. 应用地球物理, 2017, 14(1): 142-153.
[14] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[15] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司