APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 3-10    DOI: 10.1007/s11770-018-0653-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
MCSEM利用异常场主部分解消除海水层影响
王书明1,底青云2,王若2,王雪梅1,苏晓璐1,王鹏飞1
1. 中国地质大学地球物理与空间信息学院,地球内部多尺度成像湖北省重点实验室,武汉 430074
2. 中国科学院地质与地球物理研究所,北京 100029
Removal of the airwave effect by main-part decomposition of the anomalous field of MCSEM data
Wang Shu-Ming1, Di Qing-Yun2, Wang Ruo2, Wang Xue-Mei1, Su Xiao-Lu1, and Wang Peng-Fei1
1. Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China.
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 全文: PDF (750 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 空气波效应对浅海可控源电磁勘探观测数据影响极大,严重掩盖了勘探目标体的异常效应, 影响到后期勘探数据解释精度。为了有效消除空气波效应, 本文基于Stratton-Chu型积分推导了异常主部分解方法, 通过该方法得到的异常场主部可以有效消除浅海可控源电磁勘探数据中的空气波效应。理论分析表明,异常场主部分解方法实际上是一个在离散数据集上运行的有限脉冲响应(FIR)滤波器。该方法以积分变换形式实现,是一种稳健的处理方法,能有效抑制噪声对处理方法稳定性影响。数值试验显示,不仅空气-水界面造成的空气波效应,而且整个海水层的效应均可以利用这种分解方法从观测信号中去除掉。该技术对平坦海底和起伏海底均适用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词海洋可控源电磁方法   空气波   积分变换   异常场   主部分解     
Abstract: The airwave effect greatly influences the observational data from controlled-source electromagnetic exploration in shallow seas, which obscures the abnormal effects generated by exploration targets and, hence, affects the accuracy of the late exploration data interpretation. In this study, we propose a method to separate the main part from the anomalous field of marine controlled-source electromagnetic method (MCSEM) data based on Stratton–Chu integral transforms to eliminate the airwave effect, which dominates observed electromagnetic (EM) response in shallow seawater. This method of separating the main part from the anomalous field is a type of finite impulse response filter based on a discrete data set. Theoretical analysis proved that the method is stable and able to effectively depress noise. A numerical test indicated that the method could successfully eliminate the airwave effect from the observed EM signals generated by an air–water interface and a seawater layer. This technique is applicable for seawater models with either flat or rough seabeds.
Key wordsMCSEM   airwave   integral transform   anomalous field   separation of the main part   
收稿日期: 2017-09-25;
基金资助:

本研究由国家自然科学基金(编号:41574067)和国家高科技研究发展计划(863)(编号:2012AA09A404)联合资助。

引用本文:   
. MCSEM利用异常场主部分解消除海水层影响[J]. 应用地球物理, 2018, 15(1): 3-10.
. Removal of the airwave effect by main-part decomposition of the anomalous field of MCSEM data[J]. APPLIED GEOPHYSICS, 2018, 15(1): 3-10.
 
[1] Amundsen, L., Løseth, L., Mittet, R., Ellingsrud, and Ursin, B., 2006, Decomposition of electromagnetic fields into upgoing and downgoing components: Geophysics, 71(5), G211−G223.
[2] Berdichevsky, M. N., and Zhdanov, M. S., 1984, Advanced theory of deep geomagnetic sounding: Elsevier Science Ltd, Dutch.
[3] Chen, J., and Alumbaugh, D. L., 2011, Three methods for mitigating airwaves in shallow water marine controlled-source electromagnetic data: Geophysics, 76(2), 4542−4544.
[4] Ellingsrud, S., Eidesmo, T., and Johansen, S., 2002, Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola: The Leading Edge, 21(10), 972−982.
[5] Fan, Y., Snieder, R., and Singer, J., 2009, 3-D controlled source electromagnetic (CSEM) interferometry by multi-dimensional deconvolution: 79th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 28(1), 4338.
[6] Slob, E., Draganov, D., and Wapenaar, K., 2007, Interferometric electromagnetic Greens functions representations using propagation invariants: Geophysical Journal International, 169, 60−80.
[7] Snieder, R., 2006, Retrieving the Greens function of the diffusion equation from the response to a random forcing: Physice Review E Statistical Nonlinear & Soft Matter Physics, 74(4 Pt 2), 046620.
[8] Tompkins, M. J., 2004, Marine controlled-source electromagnetic imaging for hydrocarbon exploration: Interpreting subsurface electrical properties: First Break, 22, 45−51.
[9] Wapenaar, K., Slob, E., and Snieder, R., 2008, Seismic and electromagnetic controlled-source interferometry in dissipative media: Geophysical Prospecting, 56, 419−434.
[10] Wang, S. M., Di, Q. Y., Su, X. L., Wang, R., and Wang, X. M., 2017, Realization and parameter analysis for filter of 3D numerical electromagnetic migration: Chinese J. Geophys. (in chinese) , 60(2), 793−800.
[11] Zhdanov, M. S., and Wang, S., 2009, Foundations of the method of EM field separation into upgoing and downgoing parts and its application to MCSEM data: Handbook of Geophysical Exploration Seismic Exploration, 40(1), 351−379.
[12] Zhdanov, M. S., and Wang, S., 2009, Foundations of the method of EM field separation into upgoing and downgoing parts and its application to MCSEM data: Proceedings of Annual Meeting of the Consortium for Electromagnetic Modeling and Inversion, 149−178.
[13] Zhdanov, M. S., 1988, Integral Transforms in Geophysics: Springer, German.
[14] Zhdanova, O. N., and Zhdanov, M. S., 1998, Methods for the analysis and interpretation of the sea-floor electromagnetic fields: Deep Electromagnetic Exploration, 248−259.
[1] 冯彦, 蒋勇, 姜乙, 李正, 蒋瑾, 刘中微, 叶美晨, 王弘晟, 李秀明. 基于三维Taylor多项式和曲面Spline模型的区域磁异常场研究[J]. 应用地球物理, 2016, 13(1): 59-68.
[2] 张建国, 武欣, 齐有政, 黄玲, 方广有. 三维海洋电磁合成源干涉法抗空气波干扰研究[J]. 应用地球物理, 2013, 10(4): 373-383.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司