APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 387-398    DOI: 10.1007/s11770-017-0636-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于数据驱动的小波域分贝准则强能量振幅压制方法
孔选林1,2,陈辉1,3,王金龙2,胡治权2,徐丹1,3,李录明1
1. 成都理工大学,成都 610059
2. 中石化西南油气分公司勘探开发研究院,成都 610041
3. 数学地质四川省重点实验室(成都理工大学),成都 610059
An amplitude suppression method based on the decibel criterion
Kong Xuan-Lin1,2, Chen Hui1,3, Wang Jin-Long2, Hu Zhi-Quan2, Xu Dan1,3, and Li Lu-Ming1
1. Chengdu University of Technology, Chengdu 610059, China.
2. Exploration and Production Research Institute, Sinopec Southwest Company, Chengdu 610041, China.
3. Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (1748 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在对振幅值动态范围分布较大的地震数据进行强能量去噪处理时,针对常规方法通常会面临的阈值求取不准导致效果不理想、需要反复测试模块参数以及需要多轮迭代联合去噪才能达到预期效果等问题,本文提出了基于数据驱动的分贝准则小波域强能量振幅压制方法。与常规方法相比,该方法不直接对异常强振幅能量值进行统计分析,而是对振幅的能量级指数进行统计分析来确定去噪阈值,即分贝判定准则。本文采用小波变换在时频域选取最佳有效信号分布时窗进行阈值统计,然后分频压制,以进一步提升去噪效果。理论和实际数据测试表明,该方法能有效压制地震数据中的强能量振幅,对强能量振幅分布动态范围适应广、时窗依赖程度低、保幅性好,具有良好的应用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词小波变换   强能量振幅   分贝准则   数据驱动   去噪     
Abstract: To suppress the strong noise in seismic data with wide range of amplitudes, commonly used methods often yield unsatisfactory denoising results owing to inappropriate thresholds and require parametric testing as well as iterations to achieve the anticipated results. To overcome these problems, a data-driven strong amplitude suppression method based on the decibel criterion in the wavelet domain (ISANA) is proposed. The method determines the denoising threshold based on the decibel criterion and statistically analyzes the amplitude index rather than the abnormally high amplitudes. The method distinguishes the frequency band distributions of the valid signals in the time–frequency domain based on the wavelet transformation and then calculates thresholds in selected time windows, eventually achieving frequency-divided noise attenuation for better denoising. Simulations based on theoretical and real-world data verify the adaptability and low dependence of the method on the size of the time window. The method suppresses noise without energy loss in the signals.
Key wordswavelet transformation   amplitude   decibel criterion   denoising   
收稿日期: 2016-11-15;
基金资助:

本研究由十二五国家重大专项(编号:2011ZX05002-004-002)、国家自然科学基金项目(编号:41304111)、四川省科技厅重点项目(编号:2016JY0200)、四川省教育厅自然科学项目(编号:16ZB0101和14ZA0061)、“油气地球物理勘探”四川省青年科技创新研究团队专项计划(编号:2016TD0023)和成都理工大学优秀创新团队培育计划(编号:KYTD201410)联合资助。

引用本文:   
. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
. An amplitude suppression method based on the decibel criterion[J]. APPLIED GEOPHYSICS, 2017, 14(3): 387-398.
 
[1] Anderson, R. G., and Mcmechan, G. A., 1989, Automatic editing of noisy seismic data: Geophysical Prospecting, 37(8), 875-892.
[2] Bekara, M., and Bann, M. V. D., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), V89-V98.
[3] Cai, X. L., 1999, An effective method to suppress acoustic wave and high energy noise frequency-divisionally and adaptively: Oil Geophysical Prospecting, 34(4), 373-380.
[4] Cai, X. L., and Lu, Y. M., 2005, Time-frequency analysis and frequency-divisional processing of seismic data: Progress in Exploration Geophysics, 28(4), 265-270.
[5] Elboth, T., Geoteam, F., Qaisrani, H. H., et al., 2008, De-noising seismic data in the time-frequency domain: SEG Technical Program Expanded Abstracts, 9-14 November, Las Vegas, Nevada, USA, 2622-2626.
[6] Gao, J. H., Wang, W. B., Zhu, G. M., et al., 1996, On the choice of wavelet functions for seismic data processing: Chinese Journal of Geophysics, 39(03), 392-400.
[7] Gao, W., and Liu, H. S., 2013, Strong noise attenuation method based on the multiuser kurtosis criterion: Applied Geophysics, 10(1), 25-32.
[8] Goswami, J. C., and Chan, A. K., 2011, Fundamentals of wavelets: theory, algorithms, and applications: John Wiley & Sons.
[9] Linville, A. F., and Meek, R. A., 1995, A procedure for optimally removing localized coherent noise: Geophysics, 60(1), 191-203.
[10] Niu, H., 2013, Application of frequency-dependent amplitude attenuation method to suppress strong-energy noise in offshore seismic data: Geophysical Prospecting for Petroleum, 52(4), 394-401.
[11] Pan, J., Luan, X. W., Liu, H., et al., 2016, Application of anomalous amplitude noise attenuation in seismic data processingof multichannel survey: Progress in Geophysics, 31(4), 1639-1645.
[12] Wang, D. X., Wang, Y. G., Zhao, Y. H., et al., 2016, A strong seismic reflection amplitude suppressing method applied in the Ordos Basin: SEG International Geophysical Conference, 20-22 April, Beijing, China, 389-391.
[13] Wang, J., Zhou, X. Y., and Yun, C. H., 2011, Under the restriction of surface consistent anomaly amplitude decay technology implementation: Geophysical Prospecting for Petroleum, 50(5), 493-498.
[14] Wang, S. Q., Meng, X. H., Yu, C. L., et al., 2006, Seismic abnormal amplitude self-adapting inhibition: Petroleum Geology & Oilfield Development in Daqing, 25(5), 112-115.
[15] Yilmaz, Ö., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data: Society of exploration geophysicists.
[16] Zhang, J. H., 2011, The method of seismic data denosing: China University Of Petroleum Press House, China.
[1] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[2] 刘金钊,王同庆,陈兆辉,张品,朱传东,张双喜. 基于插值切割位场分离技术分析2016-1-21青海门源Ms6.4级地震前重力变化特征[J]. 应用地球物理, 2018, 15(1): 137-146.
[3] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[4] 张华,陈小宏,张落毅. 基于曲波变换的三维地震数据同时重建和噪声压制[J]. 应用地球物理, 2017, 14(1): 87-95.
[5] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[6] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[7] 宋丽蓉, 于常青, 李桂花, 冯杨洋, 何俊杰. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
[8] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[9] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[10] 高伟, 刘怀山. 基于多用户峰度准则的强噪声衰减方法[J]. 应用地球物理, 2013, 10(1): 25-32.
[11] 龙云, 韩立国, 韩利, 谭尘青. 小波域L1范数最优解匹配处理[J]. 应用地球物理, 2012, 9(4): 451-458.
[12] 唐刚, 马坚伟, 杨慧珠. 基于学习型超完备字典的地震数据去噪[J]. 应用地球物理, 2012, 9(1): 27-32.
[13] 张晓峰, 潘保芝, 王飞, 韩雪. 小波变换在裂缝识别和裂缝密度评价中的研究[J]. 应用地球物理, 2011, 8(2): 164-169.
[14] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
[15] 王珺, 陈雨红, 许大华, 乔玉雷. 基于可靠地估计反射方位和边界的构造约束保边滤波[J]. 应用地球物理, 2009, 6(4): 337-346.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司