APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 381-386    DOI: 10.1007/s11770-017-0626-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于共轭梯度法和互相关的最小二乘逆时偏移及应用
孙小东1,2,葛中慧1,李振春1
1. 中国石油大学(华东),青岛 266500
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
Conjugate gradient and cross-correlation based least-square reverse time migration and its application
Sun Xiao-Dong1,2, Ge Zhong-Hui1, and Li Zhen-Chun1
1. China University of Petroleum (Hua Dong), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resource, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 全文: PDF (671 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规逆时偏移可以实现较好的构造成像,但由于照明不均等因素使得该方法不能实现对岩性储层的精确刻画。为了得到可靠的地下反射界面的反射系数,需要用反演的方式解决成像的问题。最小二乘逆时偏移(LSRTM)被称为线性反射率反演,它通过引入Hessian矩阵实现相对的高分辨率振幅保真成像。共轭梯度算法是非常高效的迭代算法,使得LSRTM方法变得实用。基于模型数据与观测数据的互相关程度判定速度模型的准确度及计算模型更新量,可以使得LSRTM摆脱地震子波的依赖,增强稳健性。从模型试算及实际资料处理中可以看出,相比常规RTM和单程波偏移方法,LSRTM的成像结果可以直接应用到后续的储层描述和四维地震中。 本论文主要研究了最小二乘RTM的一阶近似,也就是线性Born近似。当遇到更复杂的地质构造时,可以通过考虑更高阶的近似来提高其应用效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词逆时偏移   反射率   Hessian矩阵   共轭梯度     
Abstract: Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
Key wordsReverse time migration   reflectivity   Hessian matrix   conjugate gradient   
收稿日期: 2017-05-13;
基金资助:

本研究由国家自然科学基金(编号:41574098)和中国石化地球物理重点实验室基金(编号:wtyjy-wx2016-04-2)联合资助。

引用本文:   
. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
. Conjugate gradient and cross-correlation based least-square reverse time migration and its application[J]. APPLIED GEOPHYSICS, 2017, 14(3): 381-386.
 
[1] Dai,W., Boonyasiriwat, C., and Schuster, Ge. T.,2010, 3D Multi-source Least-squares Reverse Time Migration: 80th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 3120−3124.
[2] Dai, W., Huang, Y. S., and Schuster, G. T., 2013, Least-squares reverse time migration of marine data with frequency-selection encoding: 83th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 3231−3236.
[3] Dai,W., and Schuster,G. T., 2013, Plane-wave least-squares reverse-time migration:Geophysics,78(4),165−177.
[4] Dai,W., and Schuster, J., 2009, Least-squares migration of simultaneous sources data with a deblurring filter: 79th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 2990−2994.
[5] Dai,Wei., Wang, X., and Schuster, G. T., 2011,Least-squares migration of multisource data with a deblurring filter:Geophysics,76(5), 135−146.
[6] Du, Q. Z., Guo, C. F., Zhao, Q., Gong, X. F., Wang, C. X., and Li, X. Y., 2017, Vector-based elastic reverse time migration based on scalar imaging condition: Geohysics, 82(2), 111−127.
[7] Duan,Y. T., Guitton, A.,and Sava, P., 2017, Elastic least-squares reverse time migration: Geophysics, 82(4), 315−325.
[8] Dutta,G., and Schuster, G. T., 2014, Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation: Geophysics,79(6), 251−262.
[9] Erlangga,Y. A., Vuik,K., Oosterlee, K., Plessix, R. E., and Mulder, W. A.,2004, A robust iterative solver for the two-way wave equation based on a complex shifted-Laplace preconditioner: 74th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 1897−1900.
[10] He, R., You, J. C., Liu, B., Wang, Y. C., Deng, S. C., and Zhang, F. Q., 2017, High-order generalized screen propagator migration based on particle swarm optimization: Applied Geophysics, 14(1), 64−72.
[11] He, Y. Y., Hu, T. Y., He, C., and Tan, Y. Y., 2016, P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion: Applied Geophysics, 13(4), 649− 656.
[12] Li, C., Huang, J. P., Li, Z. C., and Wang, R. R., 2017, Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint: Applied Geophysics, 14(1), 73−86.
[13] Ren, H R, Huang, G. H, Wang, H. Z, et al., 2013, A research on the Hessian operator in seismic inversion imaging: Chinese J. Geophys, 56(7), 2429−2436.
[14] Ren, H. R.,Wang, H. Z., and Huang, G. H., 2012, Theoretical analysis and comparison of seismic wave inversion and imaging methods:Lithologic Reservoirs, 24(5), 12−18.
[15] Ren, H. R.,Wang, H. Z., andHuang, G, H., 2012, Analysis of the basic problem of seismic wave inversion:Lithologic Reservoirs, 24(6), 1−9.
[16] Schuster,G. T., 1993, Least-squares cross-well migration: 62th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 110−113.
[17] Schuster,G. T., Dai,W., Zhan, G., and Boonyasiriwat, C., 2010, Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics: 80th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 3110−3114.
[18] Wang, Y. B., Zheng, Y. K., Xue,Q. F., Chang,X., Tong, W., and Luo,Y., 2017,Reverse time migration of multiples: Reducing migration artifacts using the wavefield decomposition imaging condition:Geophysics,82(4), 307−314.
[19] Tang, Y.X., 2009, Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian: Geophysics,74(6), 95−107.
[20] Zhang, D. L.,Gerard, T., and Schuster, G. T., 2014, Least-squares reverse time migration of multiples: Geophysics, 79(1), 11−21.
[21] Zhang,Y., Duan, L., and Xie, Y., 2013, A stable and practical implementation of least-squares reverse time migration: 83th Ann. Internat. Mtg, Soc. Expl. Geophys., SEG, Expanded Abstracts, 3716−3720
[22] Zong, Z. Y., Yin, X. Y., and Li, K., 2016, Joint AVO inversion in the time and frequency domain with Bayesian interference: Applied Geophysics, 13(4), 631−640.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[3] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[4] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[5] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[6] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[7] 王泰涵,黄大年,马国庆,孟兆海,李野. 改进的预处理共轭梯度快速算法在三维重力梯度数据反演中的应用[J]. 应用地球物理, 2017, 14(2): 301-313.
[8] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[9] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[10] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[11] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[12] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[13] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
[14] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
[15] 孙文博, 孙赞东, 朱兴卉. 相对保幅的角度域VSP逆时偏移[J]. 应用地球物理, 2011, 8(2): 141-149.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司