APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 363-371    DOI: 10.1007/s11770-017-0631-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于微震特性的断层检测技术
尹陈1,2
1. 川庆钻探工程有限公司地球物理勘探公司,成都 610213
2. 成都理工大学油气藏地质实验室,成都 610059
Fault detection based on microseismic events
Yin Chen1,2
1. Sichuan Geophysical Company of Chuanqing Drilling Engineering Company Limited, CNPC, Chengdu 610213, China.
2. State Key Lab. of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (1097 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 对非常规油气藏,断层既可以成为油气的流通通道,也可能成为油气藏开采开发的阻碍,体现在(1)导致压裂液的滤失;(2)导致储层水淹;(3)诱发小型地震。因地震勘探分辨率的影响使得部分小型断层无法被有效检测,该类断层在压裂施工过程中变得异常活跃并释放出大量的微震。为此,本文总结出一种融合微震时空特征、相对震级、震源机制、振幅、频率的天然断层识别方法。该方法基于储层力学机理分析天然断层和压裂裂缝激发的力学环境,并得出其时空分布规律;通过引入微地震相对震级的算法对天然断层和压裂裂缝活动所致的微地震事件进行标定,并基于地震位移理论分析天然断层和压裂裂缝所致微震的动力学特征,得出其在频率和振幅存在的差异。通过微地震地面和井中监测实例的应用和验证,该方法能有效地达到对天然断层和压裂裂缝识别的目的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词微地震监测   天然断层   相对震级   压裂   非常规油气藏   震源机制     
Abstract: In unconventional reservoirs, small faults allow the flow of oil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time–space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time–space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.
Key wordsmicroseismic (MS) monitoring   faulting   magnitude   fracturing   unconventional reservoirs   source mechanism   
收稿日期: 2016-11-07;
基金资助:

本研究由国家科技重大专项(编号:2016ZX05023-004)资助。

引用本文:   
. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
. Fault detection based on microseismic events[J]. APPLIED GEOPHYSICS, 2017, 14(3): 363-371.
 
[1] Aki, K., 1967, Scaling lay of seismic spectrum: Journal of Geophysical Research, 72(4), 1217-1231.
[2] Aki, K., 1968, Seismic displacement near a fault: J. Geophys. Res., 73, 5359-5371.
[3] Aki, K., 1979, Characterization of barriers on an earthquake fault: Geophysical Research Atmospheres, 84(B11), 6140-6148.
[4] Aki, K., 2010, Scaling law of earthquake source time function: Geophysical Journal International, 31(1-3), 3-25.
[5] Cipolla, C. L., Warpinski, N. R., Mayerhofer, M. J., et al., 2010, The relationship between fracture complexity, reservoir properties, and fracture treatment design: SPE Production & Operation, 25(4), 438-452.
[6] Dahi, T. A., Gonzalez, M., Puyang, P., et al., 2013, Post-treatment assessment of induced fracture networks: SPE Annual Technical Conference and Exhibition, SPE, 30 September-2 October, New Orleans, Louisiana, USA, SPE 166354, 1-12.
[7] Fischer, T., 2005, Modeling of multiple events using empirical Green's functions:method, application to swarm earthquakes and implications for their rupture propagation: Geophy. J. Int, 163, 991-1005.
[8] Gutenberg, B., 1945a, Amplitude of surface waves and magnitude of shallow earthquake: Bull. Seism. Soc. Am, 35, 3-12.
[9] Gutenberg, B., 1945b, Amplitudes of P, PP and S and magnitude of shallow earthquakes: Bull. Seism. Soc. Am, 35, 57-69.
[10] Gutenberg, B., 1945c, Magnitude determination for deep-focus earthquakes: Bull Seism Soc Am, 35, 117-130.
[11] Jane, L., 2013, Microseismic Case Study: Investigating the Natural Fractures and Faults of the Muskwa & Evie Shale Play in Northeastern British Columbia: 83th Annual International Meeting, SEG, Expand Abstract, 2135-2139.
[12] Jo, E. K., Leo E., Sherilyn, E. S., et al., 2010, Natural Fracture Characterization from Microseismic Source Mechanisms: A Comparison with FMI Data: 80th Annual International Meeting, SEG, Expand Abstracts, 2110-2114.
[13] Kikuchi, M., and Kanamori, H., 1986, Inversion of complex body waves-III: Physics of The Earth and Planetary Interiors, 43(3), 205-222.
[14] Kikuchi, M., and Kanamori, H., 1991, Inversion of complex body waves-III: Bull. Seism. Soc. Am., 81, 2335-2350.
[15] Lei, J., and Mark, Z., 2015, Identification of fault-controlled damage zones in microseismic data - an example from the Haynesville shale: 85th Annual International Meeting, SEG, Expand Abstract, 726-730.
[16] Maxwell, S. C., Jones, M., Parker, R., et al., 2009, Fault Activation During Hydraulic Fracturing: 79th Annual International Meeting, SEG, Expand Abstract, 1152-1156.
[17] Ping, P., Taleghani, A. D., and Sarker, B., 2016, An integrated modeling approach for natural fractures and posttreatment fracturing analysis: A case study: Interpretation, 4(4), T493-T504.
[18] Potluri, N. K., Zhu, D., and Hill, A. D., 2005, The effect of natural fractures on hydraulic fracture propagation: SPE Annual Technical Conference and Exhibition, 25-27 May, Netherlands, SPE 166354, 1-6.
[19] Richter, C. F., 1935, An instrumental earthquake magnitude scale: Bulletin of the Seismological Society of America, 25(1-2), 1-32.
[20] Seth, S., and Michael, W., 2003, An introduction to Seismology Earthquakes and Earth Structure: Blackwell Publishing Ltd, UK, 215-278.
[21] Wu, Y. Y., 2013, Earthquake fault identification method and its application: MSc. Thesis, Southwest University of Science and Technology.
[22] Yi, Y., and Mark, D. Z., 2014, The role of preexisting fractures and faults during multistage hydraulic fracturing in the Bakken Formation: Interpretation, 2(3), SG25-SG39.
[23] Yin, C., He, Z. H., Li, Y. L., et al., 2015, Research and application of the relative magnitude technique based on microseism: Chinese J. Geophys. (in Chnese), 58(6), 2210-2220.
[24] Yin, C., Liu, H., Wu, F. R., et al., 2013, The effect of the calibrated velocity on the microseismic event location precision: 83th Annual International Meeting, SEG, Expand Abstract, 1977-1981.
[25] Zhang, Y., 2008, Study on the Inversion Methods of source rupture process: PhD Thesis, Beijing University.
[26] Zhu, L., 2012, Fracture Character and Distribution Evaluation of Fracture in Xuer, Xinchang area: MSc. Thesis, Chengdu University of Technology.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[3] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[4] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[5] 杨瑞召, 赵争光, 彭维军, 谷育波, 王占刚, 庄熙勤. 三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用[J]. 应用地球物理, 2013, 10(2): 157-169.
[6] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 0, (): 367-381.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司