APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 372-380    DOI: 10.1007/s11770-017-0638-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究
李琳1,马劲风1,王浩璠1,谭明友2,崔世凌2,张云银2,曲志鹏2
1.二氧化碳捕集与封存技术国家地方联合工程研究中心,西北大学地质学系,西安710069
2.中国石油化工股份有限公司胜利油田分公司物探研究院,东营257022
Shear wave velocity prediction during CO2-EOR and sequestration in the Gao89 well block of the Shengli Oilfield
Li Lin1, Ma Jin-Feng1, Wang Hao-Fan1, Tan Ming-You2, Cui Shi-Ling2, Zhang Yun-Yin2, and Qu Zhi-Peng2
1. National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Department of Geology. Northwest University, Xi’an 710069, China.
2. SINOPEC Shengli Geophysical Research Institute, Dongying 257022, China.
 全文: PDF (1132 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 CO2驱油与地质封存过程中,预测储层横波速度曲线及横波速度随注入压力或产出压力的变化,是解释四维地震监测数据的关键。但是在实际油田中,横波测井资料较少。尤其是在CO2地质封存的四维地震监测中,CO2注入之后会把井关闭,而无法进行测井。但后续还要进行地震监测,因此需要预测CO2注入之后的纵横波速度。CO2注入之后,储层的压力和饱和度都会发生变化,弹性参数也发生了变化。本文以胜利油田高89区块为例,利用Hertz-Mindlin公式和Gassmann方程结合,提出了预测横波速度,以及不同孔隙度储层随压力变化的横波速度预测方法。由于Hertz-Mindlin公式中的配位数为未知量,本文还提出了Hertz-Mindlin公式中配位数的计算方法。利用本文提出的方法分别制作了不同CO2注入阶段的储层纵横波速度变化曲线,然后根据这些预测速度曲线制作四维人工合成地震记录,将四维人工合成地震记录与实际四维地震数据进行对比,其相关性高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词配位数   体变模量   切变模量   Hertz-Mindlin公式   横波速度   CO2驱油     
Abstract: Shear-wave velocity is a key parameter for calibrating monitoring time-lapse 4D seismic data during CO2-EOR (Enhanced Oil Recovery) and CO2 sequestration. However, actual S-wave velocity data are lacking, especially in 4D data for CO2 sequestration because wells are closed after the CO2 injection and seismic monitoring is continued but no well log data are acquired. When CO2 is injected into a reservoir, the pressure and saturation of the reservoirs change as well as the elastic parameters of the reservoir rocks. We propose a method to predict the S-wave velocity in reservoirs at different pressures and porosities based on the Hertz–Mindlin and Gassmann equations. Because the coordination number is unknown in the Hertz–Mindlin equation, we propose a new method to predict it. Thus, we use data at different CO2 injection stages in the Gao89 well block, Shengli Oilfield. First, the sand and mud beds are separated based on the structural characteristics of the thin sand beds and then the S-wave velocity as a function of reservoir pressure and porosity is calculated. Finally, synthetic seismic seismograms are generated based on the predicted P- and S-wave velocities at different stages of CO2 injection.
Key wordscoordination number   bulk modulus   shear modulus   Hertz–Mindlin   shear wave   CO2-EOR   
收稿日期: 2016-06-27;
基金资助:

本研究由国家863计划课题(编号:2012AA050103)资助。

引用本文:   
. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
. Shear wave velocity prediction during CO2-EOR and sequestration in the Gao89 well block of the Shengli Oilfield[J]. APPLIED GEOPHYSICS, 2017, 14(3): 372-380.
 
[1] Brown, L. T., 2002, Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn Field, Saskatchewan: MSc. Thesis, Colorado School of Mines.
[2] Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relationships between compressional-wave and shear wave velocities in clastic rocks: Geophysics, 50(4), 571−581.
[3] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16(4), 673−682
[4] Han, D. H., Nur, A., and Morgan, D., 1986, Effects of porosity and clay content on wave velocities in sandstones: Geophysics, 51(11), 2093−2107.
[5] Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media: Part I. theoretical formulations: Geophysics, 39(5), 587−618.
[6] Lee, M. W., 2003, Velocity ration and its application to predicting velocities: U.S. Geological Survey Bulletin 2197, Denver, Colorado.
[7] Lee, M. W., 2006, A simple method of predicting S-wave velocity: Geophysics, 71(6), 161−164.
[8] Liu, L, Geng, J. H., and Guo, T. L., 2011, The bound weighted average method (BWAM) for predicting S-wave velocity: Applied Geophysics, 9(4), 421−428.
[9] Liu, Y. J., Li, Sh. J., Wang, Y. G., and Xia, Y. H., 2016, Reservoir prediction based on shear wave in Sulige Gas Field: China. Oil Geophysical Proepecting, 51(1), 165−173.
[10] Luo, H. M., Luo, X. R., Liu, S. H., et al., 2014, Physical features and influencing factors of elastic velocity of compacted sandy-conglomerates in northern steep slope, Dongying sag: Petroleum Geology and Recovery Efficiency, 21(2), 91−94.
[11] Luo, S. L., Yang, P. J., Hu, G. M., et al., 2016, S-wave velocity prediction based on the modified P-L model and matrix equation iteration: Chinese J. Geophys, 59(5), 1839−1848.
[12] Mavko, G., Mukerji, T., and Dvorkin, J. P., 1998, The Rock Physics Handbook: Cambridge University Press, 51−52.
[13] Ma, J., Li, L., Wang, H., et al., 2016, Geophysical monitoring technology for CO2 sequestration: Applied Geophysics, 13(2), 288−306.
[14] Mindlin, R. D., 1949, Compliance of elastic bodies in contact: Journal of Applied Mechanics, 16, 259−268.
[15] Murphy, W., 1982, Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials: PhD Thesis, Stanford University.
[16] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: Journal of Geophysical Research, 109, B01201.
[17] Qiu, G. Q., Ling Y., and Fan, H. H., 2003, The characteristics and distribution of abnormal pressure in the Paleogene source rocks of Dongying Sag: Petroleum Exploration and Development, 30(3), 71−75.
[18] Shi, H., 2008, Numerical simulation research on parameter optimization of CO2 miscible flooding of Gao89-1 Block in Zheng Lizhuang Oil field: Offshore Oil, 28(1), 68−73.
[19] Tan, M. Y., Zhang, J. N., and Xu, L., 2004, Prediction method of formation pressure in Jiyuan Depression: Oil Geophysical Prospecting, 39(3), 314−318.
[20] Walton, K., 1987, The effective elastic moduli of a random packing of spheres: Journal of the Mechanics and Physics of Solids, 35(2), 213−226.
[21] Winkler, K. W., 1983, Contact stiffness in granular and porous materials: comparison between theory and experiment: Geophysical Research Letter, 10, 1073−1076.
[22] Wood, A. W., 1955, A textbook of sound: The MacMillan Co., New York.
[23] Xu, S., and White, R. E., 1995, A new velocity model for clay-sand mixtures: Geophysical Prospecting, 43(1), 91−118.
[24] Xu, S., and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28, 66−74.
[25] Zhu, C., Guo, Q. X., Gong, Q. S., Liu, Z. G., Li, S. M., and Huang, G. P., 2015, Prestack forward modeling of tight reservoirs based on Xu-White model: Applied Geophysics, 12(3), 389−399.
[1] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[2] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[3] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司