APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 270-278    DOI: 10.1007/s11770-017-0623-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维弹性波正演模拟中的混合吸收边界条件
刘鑫1,2,刘洋1,2,任志明3,蔡晓慧4,李备1,2,徐世刚1,2,周乐凯1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 中国石油大学(华东)地球科学与技术学院,青岛 266580
4. 南京工业大学岩土工程研究所,南京 210009
Hybrid absorbing boundary condition for three-dimensional elastic wave modeling
Liu Xin1,2, Liu Yang1,2, Ren Zhi-Ming3, Cai Xiao-Hui4, Li Bei1,2, Xu Shi-Gang1,2, and Zhou Le-Kai1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysics Prospecting, China University of Petroleum, Beijing 102249, China.
3. School of Geoscience, China University of Petroleum (East China), Qingdao 266580, China.
4. Institute of Geotechnical Engineering, Nanjing University of Technology, Nanjing 210009, China.
 全文: PDF (614 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震波场数值模拟中不可避免地会出现边界反射,一般采用吸收边界条件以压制人工边界反射。目前常用的分裂式完全匹配层(PML)边界条件需要在边界处进行特殊处理,尤其是在三维情况下需要将变量分裂为三个分量,增加了数值模拟的计算时间和内存占用量。与分裂式PML吸收边界条件相比,混合吸收边界条件(HABC)具有易于实现、计算量小和吸收效果好等优点,可以提高三维波动方程数值模拟的计算效率。本文将基于一阶Higdon单程波方程的混合吸收边界条件从二维计算域发展到三维,提出了适用于三维弹性波数值模拟的混合吸收边界条件。均匀模型以及复杂模型的三维数值模拟结果表明,混合吸收边界条件与传统的完全匹配层边界条件相比,具有效率高、吸收效果好的优势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词三维弹性波方程   混合吸收边界条件   正演     
Abstract: Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condition requires special treatment for the absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into three corresponding variables, which increases the computing time and memory storage. In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as ease of implementation, less computation time, and near-perfect absorption; it is thus able to enhance the computational efficiency of 3D elastic wave modeling. In this study, a HABC is developed from two-dimensional (2D) modeling into 3D modeling based on the 1st Higdon one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave numerical simulation. Numerical simulation results for a homogenous model and a complex model indicate that the proposed HABC method is more effective and has better absorption than the traditional PML method.
Key words3D elastic wave equation   hybrid absorbing boundary condition   forward modeling   
收稿日期: 2017-03-02;
基金资助:

本研究由国家自然科学基金项目(编号:41474110)资助。

引用本文:   
. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
. Hybrid absorbing boundary condition for three-dimensional elastic wave modeling[J]. APPLIED GEOPHYSICS, 2017, 14(2): 270-278.
 
[1] Bécache, E., Fauqueux, S., and Joly P., 2003, Stability of perfectly matched layers, group velocities and anisotropic waves: Journal of Computational Physics, 188(2), 399-433.
[2] Bérenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185-200.
[3] Cai, X., Liu, Y., Ren, Z., Wang, J., Chen, Z., Chen, K., and Wang, C., 2015, Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme: Applied Geophysics, 12(3), 409-420.
[4] Cerjan, C., Kosloff, D., Kosloff, R., and Resef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50(4), 705-708.
[5] Chang S., and Liu Y., 2013, A truncated implicit high-order finite-difference scheme combined with boundary conditions: Applied Geophysics, 10(1), 53-62.
[6] Chew, W. C., and Weedon, W. H., 1994, A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates: Microwave and Optical Technology Letters, 7(13), 599 - 604
[7] Chu, C., and Stoffa, P., 2012, Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method: Geophysics, 77(4), T117-T123.
[8] Clayton, C., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America, 67(6), 1529-1540.
[9] Collino, R., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294-307.
[10] Dong, L., Ma, Z., and Cao, J., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics, 43(3), 411-419.
[11] Du, Q., Sun, R., Qin, T., Zhu, Y., and Bi, L., 2010, A study of perfectly matched layers for joint multi-component reverse-time migration: Applied Geophysics, 7(2), 166-173.
[12] Festa, G., Delavaud, E., and Vilotte, J. P., 2005, Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations, Geophysics Research Letters, 32(20), 55-102.
[13] Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite-difference: Bulletin of the Seismological Society of America, 86(4), 1091-1160.
[14] Heidari, A. H., and Guddati, M. N., 2006, Highly accurate absorbing boundary conditions for wide-angle wave equations: Geophysics, 71(3), S85-S97.
[15] Higdon, R. L., 1991, Absorbing boundary conditions for elastic waves: Geophysics, 56(2), 231-241.
[16] Komatitsch, D., and Martin, R., 2009, An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation: Geophysics Journal International, 179(1), 146-153.
[17] Komatitsch, D., and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophysics Journal International, 154(1), 146-153.
[18] Li, Z., Tian, K., Huang, J., Cao, X., Li, N., and Li, Q., 2013, An unsplit implementation of the multi-axial perfectly matched layer: Progress in Geophysics, 28(6), 2984-2992.
[19] Liu, Y., and Sen, M. K., 2009, An implicit staggered-grid finite-difference method for seismic modeling, Geophysics Journal International, 179(1), 459-474.
[20] Liu, Y., 2014, Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling: Geophysical Journal International, 197(2), 1033-1047.
[21] Liu, Y., Li, X., and Chen, S., 2014, Application of the double absorbing boundary condition in seismic modeling: Applied Geophysics, 11(4), 111-119.
[22] Liu, Y., and Sen, M. K., 2010, A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation: Geophysics, 75(2), A1-A6.
[23] Liu, Y., and Sen, M. K., 2011, 3D acoustic wave modeling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions: Exploration Geophysics, 42(3), 176-189.
[24] Martin, R., Komatitsch, D., and Gedney, S. D., 2008, A variational formulation of stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equations: Computing Modeling in Engineering and Science, 37(3), 274-304.
[25] Moczo, P., Kristek, J., and Halada, L., 2000, 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion: Bulletin of the Seismological Society of America, 90(3), 587-603.
[26] Qin, Z., Lu, M., Zheng, X., Yao, Y., Zhang, C., and Song, J., 2009, The implementation of an improved NPML absorbing boundary condition in elastic wave modeling: Applied Geophysics, 6(2), 113-121.
[27] Ren, Z., and Liu, Y., 2013, A hybrid absorbing boundary condition for frequency-domain finite-difference modeling: Journal of Geophysics and Engineering, 10(5), 054003 (16pp).
[28] Ren, Z., and Liu, Y., 2014, Numerical modeling of the first order elastic equations with the hybrid absorbing boundary condition: Chinese Journal of Geophysics, 57(2), 595-606.
[29] Reynolds, A. C., 1978, Boundary conditions for the numerical solution of wave propagation problems: Geophysics, 43(6), 1099-1110.
[30] Sochacki, J., Kubichek, R., George, J., Fletcher, W., and Smithson, S., 1987, Absorbing boundary conditions and surface waves: Geophysics, 52(1), 60-71.
[31] Virieux, J., 1984, SH-wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 49(11), 1933-1942.
[32] Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity stress finite difference method: Geophysics, 51(4), 889-901.
[33] Wang, T., and Tang, X., 2003, Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach: Geophysics, 68(5), 1749-1755.
[34] Zhao, J., and Shi, Q., 2013, Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations: Applied Geophysics, 10(3), 323-326.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[3] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[4] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[5] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[6] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[7] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[8] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[9] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
[10] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[11] 白泽,谭茂金,张福莱. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
[12] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[13] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[14] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[15] 朱超, 郭庆新, 宫清顺, 刘占国, 李森明, 黄革萍. 基于Xu-White模型的致密储层叠前正演模拟研究与应用[J]. 应用地球物理, 2015, 12(3): 421-431.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司