APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 236-246    DOI: 10.1007/s11770-017-0616-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于时频二次谱的提高地震资料分辨率方法
王德营1,2,3,黄建平1,孔雪4,李振春1,王姣1
1. 中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
2. 东方地球物理公司博士后科研工作站,河北 涿州 072751
3. 山东科技大学地球科学与工程学院,山东 青岛 266590
4. 中国石油大学胜利学院油气工程学院,山东 东营 257061
Improving the resolution of seismic traces based on the secondary time–frequency spectrum
Wang De-Ying1,2,3, Huang Jian-Ping1, Kong Xue4, Li Zhen-Chun1, and Wang Jiao1
1. College of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Post-Doctoral Scientific Research Station, BGP, CNPC, Zhuozhou 072751, China.
3. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
4. College of Petroleum Engineering Shengli College China University of Petroleum, Dongying 257061, China.
 全文: PDF (1030 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 提高地震资料的分辨率是地震数据处理流程中的重要环节,对后续的精细构造解释起到重要作用。传统的提高分辨率方法大都假设地震资料是稳态的并且噪声水平不随空间发生变化,而实际情况不满足这一假设,导致提高分辨率处理后的效果达不到预期要求。针对这一问题,本文提出了一种基于时频二次谱的提高地震资料分辨率方法。首先,文中提出了基于S变换的时频二次谱,并结合模型论述了时变子波和反射系数在时频二次谱中的特征及其可分离性;其次,依据时变子波和反射系数在时频二次谱中的特征差异,构建了二维滤波器在地震记录的时频二次谱中提取时变子波的振幅谱;再次,文中研究了噪声环境中时变提高分辨率算子设计方法,并提出了依据时频谱能量强弱相对关系自适应确定频带拓宽范围的时变提高分辨率算子设计,进行提高分辨率处理;最后,文中对该方法进行了模型和实际数据的试处理,并与传统谱模拟方法和Q补偿方法的处理结果进行了对比分析,对比结果表明:本方法不需要估计Q值,提高分辨率能力不受震源子波频带的限制,在兼顾信噪比的前提下能够充分提高不同时间局部的地震数据的分辨率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词提高分辨率   S变换   时频谱   时变子波   谱模拟反褶积   Q补偿     
Abstract: The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time–frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time–frequency spectrum. Second, using the secondary time–frequency spectrum, we design a two-dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time–frequency–space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
Key wordsresolution   S transform   time–frequency spectrum   time-variant wavelet   spectrum-modeling deconvolution   Q compensation   
收稿日期: 2017-02-26;
基金资助:

本研究由国家973课题(编号:2014CB239006),国家自然科学基金(编号:41104069和41274124),和中央高校基本科研业务费专项基金(编号:R1401005A)联合资助。

引用本文:   
. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
. Improving the resolution of seismic traces based on the secondary time–frequency spectrum[J]. APPLIED GEOPHYSICS, 2017, 14(2): 236-246.
 
[1] Ahadi, A., Riahi, M. A., 2013, Application of Gabor deconvolution to zero-offset VSP data: Geophysics, 78(2), D85?91.
[2] Bai, H., and Li, K. P., 1999, Stratigraphic absorption compensation based on time-frequency analysis: Oil Geophysical Prospecting (in Chinese), 34(6), 642?648.
[3] Castagna, J. P., Sun, S., and Siegrfied, R. W., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Eage, 22(2), 120?127.
[4] Che-Alota, V., Atekwana, E., Atekwana, E., et al., 2008, Geophysical and geochemical attenuated signatures associated with hydrocarbon contaminated site undergoing bioremediation: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2719?2723.
[5] Chen, Z. B., Wang, Y. H., Chen, X. H., et al., 2013, High-resolution seismic processing by Gabor deconvoluton: Journal of Geophysics and Engineering, 10(6), 065002.
[6] Djeffal, A., Pennington, W., and Askari, R., 2016, Enhancement of Margrave deconvolution of seismic signals in highly attenuating media using the modified S-transform: 86th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 5198?5202.
[7] Goloshubin, G. M., and Bakulin, A. V., 1998, Seismic reflectivity of a thin porous fluid-saturated layer versus frequency: 68th Annual Internat. Mtg., Soc, Expl. Geophys., Expanded Abstracts, 976?979.
[8] Goloshubin, G. M., and Korneev, V. A., 2000, Seismic low-frequency effects from fluid saturated reservoir: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1671?1674.
[9] Li, F., Wang, S. D., Chen, X. H., et al., 2013, Prestack nonstationary deconvolution based on variable-step sampling in the radial trace domain: Applied Geophysics, 10(4), 423?432.
[10] Liu, X. W., Nian J. B., and Liu, H., 2006, Generalized S-transform based compensation for stratigraphic absorption of seismic attenuation: Geophysical Prospecting for Petroleum (in Chinese), 45(1), 9?14.
[11] Margrave, G. F., and Lamoureux, M. P., 2001, Gabor deconvolution: CREWES Research Report, 13, 241?276.
[12] Margrave, G. F., Lamoureux, M. P., and Henley, D. C., 2011, Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data: Geophysics, 76(3), W15?W30.
[13] Painter, S., Beresford, G., and Paterson, L., 1995, On the distribution of seismic reflection coefficients and seismic amplitudes: Geophysics, 60(4), 1187?1194.
[14] Quintal, B., Schmalholz, S. M., and Podladchikov, Y. Y., 2008, Low-frequency reflections from a thin layer with high attenuation caused by interlayer flow: Geophysics, 74(1), N15?N23.
[15] Ricker, N., 1977, Transient waves in visco-elastic media: Elsevier Scientific Publishing Company, Amsterdam, 37?67.
[16] Rosa, A. L. R., and Ulrych, T. J., 1991, Processing via spectral modeling: Geophysics, 56(8), 1244?1251.
[17] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: the S transform: IEEE Transaction on signal processing, 44(4), 998?1001.
[18] Sun, X. K., Sam, Z. S., and Xie, H. W., 2014, Nonstationary sparsity-constrained seismic deconvolution: Applied Geophysics, 11(4), 459?467.
[19] Tang, B. W., Zhao, B., Wu, Y. H., et al., 2010, An improved spectral modeling deconvolution: 80th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3668?3672.
[20] Van der Baan, M., 2008, Time-varying wavelet estimation and deconvolution by kurtosis maximization: Geophysics, 72(2), V11?V18.
[21] Wang, L. L., Gao, J. H., Xu, Z. B., et al., 2014, Hydrocarbon detection using adaptively selected spectrum attenuation: Journal of Applied Geophysics, 105, 59?66.
[22] Wang, L. L., Gao, J. H., and Zhang, M., 2010, A method for absorption compensation based on adaptive molecular decomposition: Applied Geophysics, 7(1), 74?87.
[23] Xue, Y. J., Cao, J. X., and Tian, R. F., 2013, A comparative study on hydrocarbon detection using three EMD-based time-frequency analysis methods: Journal of Applied Geophysics, 89, 108?115.
[24] Zhou, H. L., Wang, J., Wang, M. C., et al., 2014, Amplitude spectrum compensation and phase spectrum correction of seismic data based on the generalized S transform: Applied Geophysics, 11(4), 468?478.
[1] 吴宗蔚,伍翊嘉,徐明华,郭思. 连续谱比斜率法叠前CMP道集Q值估计[J]. 应用地球物理, 2018, 15(3-4): 481-490.
[2] 杜正聪,胥德平,张金明. 分数阶S变换,第二部分:在储层预测及流体识别中的应用[J]. 应用地球物理, 2016, 13(2): 343-352.
[3] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[4] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[5] 谭玉阳, 何川, 王艳冬, 赵忠. 基于S变换时频域极化滤波的面波压制方法研究[J]. 应用地球物理, 2013, 10(3): 279-294.
[6] 胥德平, 郭科. 分数阶S变换:第一部分,理论[J]. 应用地球物理, 2012, 9(1): 73-79.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司