APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 165-174    DOI: 10.1007/s11770-017-0604-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
瞬变电磁法圆锥型场源特征与电感效应
杨海燕1,2,李锋平1,岳建华3,郭福生1,刘旭华1,张华1
1. 东华理工大学省部共建核资源与环境国家重点实验室培育基地,江西南昌 330013
2. 东华理工大学放射性地质与勘探技术国防重点学科实验室,南昌 330013
3. 中国矿业大学资源与地球科学学院,江苏徐州 221116
Cone-shaped source characteristics and inductance effect of transient electromagnetic method
Yang Hai-Yan1,2, Li Feng-Ping1, Yue Jian-Hua3, Guo Fu-Sheng1, Liu Xu-Hua1, and Zhang Hua1
1. State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
2. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China.
3. School of Resource and Earth Science, China University of Mining & Technology, Xuzhou 221006, China.
 全文: PDF (834 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 应用于煤矿巷道、工程隧道等地下有限空间以及城市和工程浅层探测的瞬变电磁法常采用多匝小线圈装置,但是多匝线圈装置的互感耦合大,关断时间长,使探测的浅部“盲区”增大。为此,提出了一种圆锥型场源装置,推导了该装置内各匝线圈半径的计算公式。采用理论解析式对均匀介质中圆锥型场源一次场、二次场特征进行了计算分析,对圆锥型场源与多匝线圈互感系数进行了比较;应用快速汉克尔变换和改进的余弦变换数值滤波法,基于叠加原理的思想讨论了圆锥型场源下瞬变电磁正演方法,并以H型和KH型地电模型为例对正演结果进行了“烟圈”反演分析。研究表明:对于等效磁矩为926.1A﹒m2的多匝回线和圆锥型场源,前者的互感约为后者的9倍;增大圆锥型场源的高度可减小互感系数,但其底半径的进一步变化对互感影响有限。圆锥型场源一、二次场特征与多匝线圈相似,但其二次场和总场暂态响应强于多匝线圈。所提出的综合视电阻率方法适用于圆锥型场源计算,正演结果和“烟圈”反演结果与初始模型的吻合性良好。本文研究成果为减小瞬变电磁探测“盲区”提供一种选择,也为装置组合形式和非线性反演技术等后续研究提供理论参考。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词瞬变电磁法   圆锥型场源   视电阻率   互感   “烟圈”反演     
Abstract: Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.
Key wordsTransient electromagnetic method   Cone-shaped source   Apparent resistivity   Mutual inductance   “Smoke ring&rdquo   inversion   
收稿日期: 2016-04-19;
基金资助:

本研究由国家自然科学基金项目(编号:41564001和41572185)和江西省自然科学基金项目(编号:20151BAB203045)联合资助。

引用本文:   
. 瞬变电磁法圆锥型场源特征与电感效应[J]. 应用地球物理, 2017, 14(1): 165-174.
. Cone-shaped source characteristics and inductance effect of transient electromagnetic method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 165-174.
 
[1] Anderson, W. L., and Chave, A. D., 1979, Numerical integration of related Hankel transforms of order 0 and 1 by adaptive digital filtering: Geophysics, 44(7), 1287−305.
[2] Asten, M. W., and Price, D. G., 1985, Transient EM sounding by the in/out-loop method: Exploration Geophysics, 16(3), 165−168.
[3] Chen, M. S., and Tian, X. B., 1999, Study on the transient electromagnetic (TEM) sounding with electric dipole.V. The measured induced voltage transformed to the vertical magnetic field: Goal Geology and Exploration, 27(5), 63−65.
[4] Christian, H., Rainer, S., and Siegfried, S., 2003, Efficient inductance calculation in interconnect structures by applying the Monte Carlo method: Microelectronics Journal, 34(9), 815−821.
[5] Christian, P., and Yiannos, M., 2008, Inductance calculation of planar multi-layer and multi-wire coils:An analytical approach: Sensors and Actuators, S145−146, 394−404.
[6] Fan, T., Zhao, Z., Wu, H., et al., 2014, Research on inductance effect removing and curve offset for mine TEM with multi small loops: Journal of China Coal Society, 39(5), 932−940.
[7] Fitterman, D. V., and Anderson, W. L., 1987, Effect of Transmitter Turn-off Time on Transient Soundings: Geoexploration, 24(2), 131−146.
[8] Guptasarma, D., and Singh, B., 1997, New digital linear filters for Hankel J0 and J1 transforms: Geophysical Prospecting, 45, 745−762.
[9] Harlander, C., Sabelka, R., and Selberherr, S., 2003, Efficient inductance calculation in interconnect structures by applying the Monte Carlo method: Microelectronics Journal, 34, 815−821.
[10] Jiang, B. Y., 1998, Applied near zone magnetic source Transient Electromagnetic Exploration: Geological Publishing House, Beijing.
[11] Jiang, Z. H., Yue, J. H., and Liu, S. C., 2007, Mine transient electromagnetic observation system of small multi-turn coincident configuration: Journal of China Coal Society (in Chinese), 32(11), 1152-1156.
[12] KANAHTAPOB, П. N., and ЦEHTNHH, N. А., 1986, Handbook of inductance calculation: Mechanical Industry Press, Beijing.
[13] Kaufman, A. A., and Eaton, P. A., 2001, The Theory of Inductive Prospecting: Elsevier.
[14] Li, W. Y., and Wu, Z. H., 2010, A compute formula of self-inductance coefficient of rectangular coil in transient electromagnetic methods: Geology and Exploration, 46(1), 160−164.
[15] Li, X., 2002, Theory and application of transient electromagnetic method: Science and Technology Press, Shanxi.
[16] Li, X., Xue, G. Q., Song, J. P., et al., 2005, Application of the adaptive shrinkage genetic algorithm in the feasible region to TEM conductive thin layer inversion: Applied Geophysics, 2(4), 204−210.
[17] Li, Y. Q., 2002, Equivalent self inductance of mutual coils in series: Journal of Liaoning Teachers College, 4(2), 23−25.
[18] Liu, Y., Wang, X. B., and Wang, Y., 2013, Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation: Applied Geophysics, 10(2), 134−144.
[19] Morrison, H. F., Phillips, R. J., O’Brien, D. P., et al., 1969, Quantitative interpretation of transient electromagnetic fields over a layered half-space: Geophysical prospecting, 17(1), 82−101.
[20] Nabighian, M. N., 1979, Quasi-static transient response of a conducting half-space-An approximate representation: Geophysics, 44(10), 1700−1705.
[21] Ni, G. Z., 2010, Numerical calculation of engineering electromagnetic field: China Machine Press, Beijing.
[22] Peters, C., and Manol, Y., 2008, Inductance calculation of planar multi-layer and multi-wire coils: An analytical approach: Sensors and Actuators, A145−146, 394−404.
[23] Raiche, A. P., and Gallagher, R. G., 1985, Apparent resistivity and diffusion velocity: Geophysics, 50(10), 1628−1633.
[24] Rainey, J. K., DeVries, J. S., and Sykes, B. D., 2007, Estimation and measurement of flat or solenoidal coil inductance for radio frequency NMR coil design: Journal of Magnetic Resonance, 187(1), 27−37.
[25] Sijoy, C. D., and Chaturvedi S., 2008, Calculation of accurate resistance and inductance for complex magnetic coils using the finite-difference time-domain technique for electromagnetics: IEEE Transaction on Plasma Science, 36(1), 70−79.
[26] Tang, X. G., Hu, W. B., et al., 2011, Topographic effects on long offset transient electromagnetic response: Applied Geophysics, 8(4), 277−284.
[27] Wang, H. J., 2004, Digital filtering algorithm of sine and cosine transform: Engineering Geophysics, 51(6), 1936−1942.
[28] Xue, G. Q., 2004, On surveying depth by transient electromagnetic sounding method: Oil Geophysical Prospecting, 39(5), 575−57 8.
[29] Xue, G. Q., Song, J. P., Yan, S. N., et al., 2004, Analysis and estimation of the minimum depth of large loop transient electromagnetic method: Geotechnical Investigation Surveying, 2004(2), 63−65.
[30] Yang, H. Y., 2009, Study on numerical simulation and distribution regularity of transient electromagnetic field with Mine-used multi small loop: PhD. Thesis, China University of Mining Technology, Jiangsu Xuzhou.
[31] Yang, H. Y., Deng, J. Z., Tang, H. Z., et al., 2014, Translation algorithm of data Interpretation technique in full-Space transient electromagnetic method: Journal of Jilin University, 44(3), 1012−1017.
[32] Yang, H. Y., and Yue, J. H., 2015, The theory and technique of mine transient electromagnetic method: Science Press, Beijing.
[33] Yang, H. Y., Yue, J. H., and Liu, Z. X., 2006, Theoretical Stud y of inductance effect with multi-axial coils for TEM in underground mine: Journal of Jilin University (Earth Science Edition), 36(sup), 168−171.
[34] Yu, C. T., Liu, H. F., Zhang, X. J., et al., 2013, The analysis on IP aignals in TEM response based on SVD: Applied Geophysics, 10(1), 79−87.
[35] Yu, J. C., Liu, Z. X., Liu, S. C., et al., 2007, Theoretical analysis of mine transient electromagnetic method and its application in detecting water burst structures in deep coal stope: Journal of China Coal Society, 32(8), 818−821.
[36] Zhou, N. N., Xue, G. Q., and Wang, H. Y., 2013, Comparison of the time-domain electromagnetic field from an infinitesimal point charge and dipole source: Applied Geophysics, 10(3), 349−356.
[1] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[2] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[3] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司