APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 133-141    DOI: 10.1007/s11770-017-0598-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于纵-横波阻抗与密度关系为约束条件的Fatti方程叠前密度反演方法研究
梁立锋1,2,张宏兵1,但志伟2,许自强2,刘秀娟2,曹呈浩1
1. 河海大学地球科学与工程学院,江苏南京 210098
2. 中海油能源发展工程技术物探技术研究所,广东湛江 524000
Prestack density inversion using the Fatti equation constrained by the P- and S-wave impedance and density
Liang Li-Feng1,2, Zhang Hong-Bing1, Dan Zhi-Wei2, Xu Zi-Qiang2, Liu Xiu-Juan2, and Cao Cheng-Hao1
1. College of Earth Science & Engineering, Hohai University, Nanjing 210098, China.
2. CNOOC Energy Development Engineering Geophysical Prospecting Institute of Technology, Zhanjiang 524000, China.
 全文: PDF (861 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 叠前同步反演是以改进的Fatti方程为基础,以纵横波速度比为常数作为约束条件,本文以纵波阻抗与密度关系式及横波阻抗与密度关系式共同作为约束条件,代替Vp/Vs = 常数这个约束条件,提出了改进约束条件的Fatti方程,克服了密度受纵波阻抗影响的问题。我们通过数值模拟对比两种方法对密度反演的敏感性,表明本文提出的方法对密度的敏感性明显地得到了改善。此外,采用随机共轭梯度法进行反演,计算相对快速且具有全局寻优解。合成数据及实际数据应用实例表明:本文提出的反演方法对常规岩性及特殊岩性都有效。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词密度   反演   Fatti近似   敏感性     
Abstract: Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.
Key wordsdensity   inversion   Fatti   sensitivity   
收稿日期: 2016-10-19;
基金资助:

本研究由国家自然科学基金项目(编号:41374116和41674113)和中国海洋石油总公司科技项目(编号:CNOOC-KJ 125 ZDXM 07 LTD NFGC 2014-04)资助。

引用本文:   
. 基于纵-横波阻抗与密度关系为约束条件的Fatti方程叠前密度反演方法研究[J]. 应用地球物理, 2017, 14(1): 133-141.
. Prestack density inversion using the Fatti equation constrained by the P- and S-wave impedance and density[J]. APPLIED GEOPHYSICS, 2017, 14(1): 133-141.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology: Theory and methods, Version 1. Freeman: W. H., Freeman and Co, 100-170.
[2] Buland, A., and More, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68(1), 185-198.
[3] Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relationships between compressional and shear-wave velocities in clastic silicateocks: Geophysics, 50(2), 334-339.
[4] Fang, Y., Zhang, F. Q., and Wang, Y. C., 2016, Generalized linear joint PP-PS inversion based on two constraints: Applied Geohysiss, 13(1), 103-115.
[5] Fatti, J. L., Smith, G. C., Vail, P. J., et al., 1994, Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostacktechnique: Geophysics, 59(9),1362-1376.
[6] Gardner, G. H. F., and Gregory, A. R., 1974, Formation velocity and density: the diagnostic basics for stratigraphic traps: Geophysics, 39(6), 770-780.
[7] Hampson, D. P., Russell, B. H., and Bankhead, B., 2005, Simultaneous inversion of pre-stack seismic data: 75th Annual International Meeting, SEG, Expanded Abstracts, 1633-1636.
[8] Huang, H. D., Wang, Y. C., and Guo, F., 2015, Zoeppritz equation-based prestack inversion and its application in fluid identification: Applied Geohysiss, 12(2),199-1211.
[9] Lavaud, B., Kabir, N., and Chavent, G., 1999, Pushing AVO inversion beyond linearized approximation: Journal of Seismic Exploration, 8(3), 279−302.
[10] Li, Y., 2005, A study on applicability of density inversion in defining reservoirs: 75th Annual International Meeting, SEG, Expanded Abstracts, 1646-1649.
[11] Liang, L. F., Liu, X. J., and Dan, Z. W., 2011a, Application research on using pre-stack density inversion to predict lithology: Offshore oil, 31(2), 53−58.
[12] Liang, L. F., Dan, Z. W., and Chen, J. F., 2011b, The Influence of Pre-stack Density Inversion Error on Gas Saturation Estimate: Chinese Journal of Engineering Geophysics, 8(3), 257−260.
[13] Russell, B. H., Gray, D., and Hampson, D. P., 2011, Linearized AVO and poroelasticity: Geophysics, 76(3), C19-C29.
[14] Wang, K., N., Sun, Z. D., and Dong, N., 2015, Prestack inversion based on anisotropic Markov random field-maximum posterior probability inversion and its application to identify shale gas sweet spots: Applied Geophysics, 12(4), 533−544.
[15] Zhang, F. Q., Wei, F. J., Wang Y. C., et al., 2013, Generalized linear AVO inversion with the priori constraint of trivariate cauchy distribution based on Zoeppritz equation: Chinsese J. Geophys. (in Chinese), 2013, 56(6), 2098−2115.
[16] Zhang, H. B., Shang, Z. P., and Yang, C. C., 2007, A non-linear regularized constrained impedance inversion: Geophysical Prospecting, 55, 819−833.
[17] Zhu, P., M., Wang, J. Y., and Zhan, Z. B., 2004, Stochasitic conjugate gradient inversion: Oil Geophysical Prospecting, 35(2), 208−213.
[18] Zoeppritz, K., and Erdbebnenwellen, V., 1919, On the reflection and penetration of seismic waves through unstable layers: Gottinger Nachrichten, 1, 66−84.
[19] Zong, Z., Yin, X., and Wu, G., 2012, AVO inversion and poroelasticity with P- and S-wave moduli: Geophysics, 77(6), 29-36.
[20] Zong, Z., 2013, Methodologies of model driven inversion with pre-stack seismic data: PhD Thesis, China University of Petroleum (Huadong), Qingdao.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[6] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[7] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[8] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[9] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[10] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[11] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[12] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[13] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[14] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[15] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司