APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 142-153    DOI: 10.1007/s11770-017-0610-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于结构张量算法的南海深水三维立体层析反演实例研究
邢逢源1,杨锴1,薛冬2,汪小将2,陈宝书2
1. 同济大学海洋地质国家重点实验室,上海 200092
2. 中海石油研究中心,北京 100027
Application of 3D stereotomography to the deep-sea data acquired in the South China Sea: a tomography inversion case
Xing Feng-Yuan1, Yang Kai1, Xue Dong2, Wang Xiao-Jiang2, and Chen Bao-Shu2
1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China.
2. CNOOC Research Center, Beijing 100029, China.
 全文: PDF (1469 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文首次将三维直角坐标系下导出的三维立体层析反演方法用于南海深水三维实际数据的偏移速度建模。三维立体层析反演的成功应用依赖于射线参数水平分量的正确提取以及则化项的正确实施,二者缺一不可。本文首先通过结构张量算法实现了对三维立体层析数据空间中最重要的数据分量:射线参数水平分量的高效率提取;其次,由于海洋三维数据具有炮线间距较大同时垂直于炮线方向的射线参数水平分量无法得到的特殊性,强化了规则化项的应用,最终够保证了算法的稳健收敛,反演得到的模型可以很好的服务于叠前深度偏移。基于三维理论数据与南海某实际三维数据的数值实验证实了算法以及实现策略的稳健性和可靠性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词三维立体层析反演   结构张量   射线参数水平分量提取   规则化     
Abstract: A 3D stereotomography algorithm, which is derived from the 3D Cartesian coordinate, is applied for the first time to the deep-sea data acquired in the LH area, South China Sea, to invert a macro velocity model for pre-stack depth migration. The successful implementation of stereotomography is highly dependent on the correct extraction of slowness components and the proper application of regularization terms. With the help of the structure tensor algorithm, a high-quality 3D stereotomography data space is achieved in a very efficient manner. Then, considering that the horizontal slowness in cross-line direction is usually unavailable for 3D narrow-azimuth data, the regularization terms must be enhanced to guarantee a stable convergence of the presented algorithm. The inverted model serves as a good model for the 3D pre-stack depth migration. The synthetic and real data examples demonstrated the robustness and effectiveness of the presented algorithm and the related schemes.
Key words3D stereotomography   structure tensor   extraction of horizontal components of slowness   regularization   
收稿日期: 2015-08-27;
基金资助:

本研究由国家自然科学基金面上项目(编号:41574098和41630964)和国家科技重大专项(编号:2016ZX05026-001-03)资助。

引用本文:   
. 基于结构张量算法的南海深水三维立体层析反演实例研究[J]. 应用地球物理, 2017, 14(1): 142-153.
. Application of 3D stereotomography to the deep-sea data acquired in the South China Sea: a tomography inversion case[J]. APPLIED GEOPHYSICS, 2017, 14(1): 142-153.
 
[1] Billette, F., and Lambare, G., 1998, Velocity macro-model estimation from seismic reflection data by stereotomography: Geophysical Journal International, 135, 671−690.
[2] Davis, T. A., 2011, Algorithm 915, suitesparseqr: multifrontal multithreaded rank-revealing sparse qr factorization: Acm Transactions on Mathematical Software, 38(1), 1−22.
[3] Farra, V., and Madariaga, R., 1987, Seismic waveform modeling in heterogeneous media by ray perturbation theory: Journal of Geophysical Research Solid Earth, 92(B3), 2697-2712.
[4] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67(6), 1946−1960.
[5] Lambaré, G., 2008, Stereotomgraphy: Geophysics, 73(5), VE25−VE34.
[6] Li, Z. W., Yang, K., Xiong, K., Ni, Y., and Wang, Y. X., 2015, Towards an Edge-preserving Stereotomography with a Practical Model Regularization Technique: 77th EAGE Annual Meeting, Expanded Abstracts, We P1 03.
[7] Ni, Y., Yang, k., Chen, B. S., et al., 2013, Stereotomography inversion method theory and application testing: Geophysical Prospecting for Petroleum (in Chinese), 52(2), 430−436.
[8] Ni, Y., Wang, L., Li, Z., et al., 2014, Preliminary practice of stereotomography: Beijing 2014 International Geophysical Conference & Exposition, Expanded Abstracts, 1360.
[9] Prieux, V., Lambaré, G., Operto, S., and Virieux, J., 2013, Building starting models for full waveform inversion from wide-aperture data by stereotomography: Geophysical Prospecting, 61(1), 109−137.
[10] Ren, L. J., Sun, X. D., Li, Z. C., et al., 2014, The stereotomography based on eigen-wave attributes: Beijing 2014 International Geophysical Conference & Exposition, Expanded Abstracts, Beijing, China, April 21−24.
[11] Van Vliet, L. J., and Verbeek. P. W., 1995, Estimators for orientation and anisotropy in digitized images: Asci95, Proc First Conference of the Advanced School for Computing & Imaging, Asci, 442-450.
[12] Van Vliet, L. J., Young, I. T., and Verbeek, P. W., 1998, Recursive Gaussian Derivative Filters: Proceedings of the 14th International Conference on Pattern Recognition, ICPR’98, Brisbane (Australia), 16−20 August 1998, IEEE Computer Society Press, Vol. I, 509−514.
[13] Wang, Y., X., Yang, K., Yang, X., C., et al., 2016, A high-density stereo-tomography method based on the gradient square structure tensors algorithm: Chinese Journal of Geophysics (in Chinese), 59(1), 263−276.
[14] Yang, K., Xing, F. Y., Li, Z.W., Wang, Y. X., and Ni, Y., 2016, 3D stereotomography based on the non-reduced Hamiltonian (in Chinese): Chinese Journal of Geophysics, 59(9), 3366−3378.
[1] 蔡瑞, 赵群, 佘德平, 杨丽, 曹辉, 杨勤勇. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司