APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 125-132    DOI: 10.1007/s11770-017-0613-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维TTI介质中的纯准P波方程及求解方法
张建敏1,2,3,何兵寿1,2,3,唐怀谷1,2,3
1. 中国海洋大学,山东青岛 266100
2. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室,山东青岛 266071
3. 海底科学与探测技术教育部重点实验室,山东青岛 266100
Pure quasi-P wave equation and numerical solution in 3D TTI media
Zhang Jian-Min1,2,3, He Bing-Shou1,2,3, and Tang Huai-Gu1,2,3
1. Ocean University of China, Qingdao Shandong 266100, China.
2. Evaluation and Detection Technology Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Key Lab of Submarine Geosciences and Prospecting Techniques Ministry of Education, Qingdao 266100, China.
 全文: PDF (729 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 以具有垂直对称轴的横向各向同性(Vertical Transversely Isotropic,简称VTI)介质中纯准P波方程为基础,通过投影变换推导出倾斜横向各向同性(Titled Transversely Isotropic,简称TTI)介质中的纯准P波方程,该方程从根本上消除伪横波的影响。方程形式简单并且在δ > ε的情况下仍能稳定求解。文章还给出TTI介质中纯准P波方程数值求解的高阶有限差分格式并推导对应的稳定性条件,依据完全匹配层(Perfectly Matched Layer,简称PML)的分裂思路给出TTI介质中纯准P波方程的PML吸收边界条件。理论分析和数值计算结果均表明:本文推导的纯准P波方程能更好地描述TTI介质中的准P波,文章给出的正演算法也能够准确模拟TTI介质中准P波的传播过程。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词TTI介质   纯准P波方程   高阶有限差分   PML边界条件   BP模型     
Abstract: Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ε. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.
Key wordsTTI media   the pure quasi-P wave equation   high-order finite   PML boundary conditions   BP model   
收稿日期: 2016-04-13;
基金资助:

本研究由国家自然科学基金项目(编号:41674118)和国家重大科技专项(编号:2016ZX05027-002)合资助。

引用本文:   
. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
. Pure quasi-P wave equation and numerical solution in 3D TTI media[J]. APPLIED GEOPHYSICS, 2017, 14(1): 125-132.
 
[1] Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media: Geophysics, 65(4), 1239−1250.
[2] Dellinger, J., and Etgen, J., 1990, Wave-field separation in two-dimensional anisotropic media: Geophysics, 55(7), 914−919.
[3] Du, Q. Z., Guo, C. F., and Gong, X. F., 2015, Hybrid PS/FD numerical simulation and stability analysis of pure P-wave propagation VTI media: Chinese J. Geophys, (in Chinese), 58(4), 1290−1309.
[4] Duvenck, E., Milcik, P., and Bakker, P. M., 2008, Acoustic VTI wave equations and their application for anisotropic reverse-time migration: 78th Annual International Meeting, SEG, Expanded Abstracts, 2186−2190.
[5] Fletcher, R. P., Du, X., and Fowler, P. J., 2009, Reverse time migration in tilted transversely isotropic (TTI) media: Geophysics, 74(6), WCA179−WCA187.
[6] Fowler, P. J., Du, X., and Fletcher, R. P., 2010, Coupled equations for reverse time migration in transversely isotropic media: Geophysics, 75(1), S11−S22.
[7] Han, L. H., and He, B. S., 2010, First-order Quasi-P wave equation forward modeling and boundary conditions in VTI media: Chinese J. Oil Geophysics Prospecting, (in Chinese), 45(6), 819−825.
[8] Hestholm, S., 2007, Acoustic VTI modeling using high-order finite differences: 77th Annual International Meeting, SEG, Expanded Abstracts, 139−143.
[9] Huang, Y. J., Zhu, G. M., and Liu, C. Y., 2011, An approximate acoustic wave equation for VTI media: Chinese J. Geophys, (in Chinese), 54(8), 2117−2123.
[10] Kosloff, D. D., and Baysal, E., 1982, Forward modeling by a Fourier method: Geophysics, 47(10), 1402−1412.
[11] Li, B., Li, M., and Liu, H. W., 2012, Stability of reverse time migration in TTI media: Chinese J. Geophys, (in Chinese), 55(4), 1366−1375.
[12] Liu, Y., Li, C. C., and Mou, Y. G., 1998, Finite-difference numerical modeling of any even-order accuracy: Chinese J. Oil Geophysics Prospecting, (in Chinese), 33(1), 1−10.
[13] Pestana, R. C., Ursin, B., and Stoffa, P. L., 2011, Separate P- and SV-wave equations for VTI media: Geopysics, 75(4), T163−T167.
[14] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1996.
[15] Xu, S., and Zhou, H., 2014, Accurate simulation of pure quasi-P-waves in complex anisotropic media: Geophysics, 79(6), 341−348.
[16] Xu, S., Tang, B., Mu, J., and Zhou, H., 2015, Quasi-P wave propagation with an elliptic differential operator: 85th New Orleans Annual Meeting, SEG, Expanded Abstracts, 4380−4384.
[17] Yan, J., and Paul, S., 2009, Elastic wave-mode separation for VTI media: Geophysics, 74(5), WB19−WB32.
[18] Yan, J., and Paul, S., 2012, Elastic wave-mode separation for tilted transverse isotropic media: Geophysical Prospecting, 60, 29−48.
[19] Zhan, G., Pestana, R. C., and Stoffa, P. L., 2013, An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation: Journal of Geophysics and Engineering, 10(2), 25004−25011.
[20] Zhou, H., Zhang, G., and Bloor, R., 2006, An anisotropic acoustic wave equation for modeling and migration in 2D TTI media: 76th Annual International Meeting, SEG, Expanded Abstracts, 194−198.
[1] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[2] 廖建平, 王华忠, 马在田. 二维频率空间域25点优化系数差分格式弹性波数值模拟[J]. 应用地球物理, 2009, 6(3): 259-266.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司