APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 27-32    DOI: 10.1007/s11770-012-0310-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于学习型超完备字典的地震数据去噪
唐刚1,2,马坚伟3,杨慧珠1
1.清华大学航天航空学院地震波勘探开发研究所,北京,100084;
2.中国石油勘探开发研究院石油物探技术研究所,北京,100083;
3哈尔滨工业大学应用数学研究所,哈尔滨,150001
Seismic data denoising based on learning-type overcomplete dictionaries*
Tang Gang1,2, Ma Jian-Wei3, and Yang Hui-Zhu1
1. Institute of Seismic Exploration, School of Aerospace, Tsinghua University, Beijing 100084, China.
2. Geophysical Department, RIPED, PetroChina, Beijing 100083, China.
3. Institute of Applied Mathematics, Harbin Institute of Technology, Harbin 150001, China.
 全文: PDF (1142 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于变换基函数的方法,是地震去噪处理中最常用的技术之一,它利用地震数据在某种基函数变换域内的稀疏性和可分离性来达到剔除噪声的目的。但传统的做法是事先选定一组固定的变换基并在对应域内进行处理,其效果往往并不十分令人满意。为了探索新的改进方法,我们引入学习型超完备冗余字典,即根据地震模型数据进行学习和训练,以寻求最优的稀疏表示字典,而不是只选用固定的变换基。本文在字典学习中融入全变差最小化策略以压制伪吉布斯现象。我们选用离散傅里叶变换作为初始变换,并以随机噪声为例,对单一的全局变换、未经学习的超完备冗余字典和学习型超完备冗余字典做了比较。结果表明,利用经过训练的超完备冗余字典,在对地震数据进行稀疏表示的同时,也达到了有效去除噪声的目的,可视性和信噪比都得到了明显提高。我们也比较了均匀和不均匀字典子块的效果,结果表明,不均匀的字典子块更利于地震数据去噪。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐刚
马坚伟
杨慧珠
关键词学习型超完备冗余字典   地震去噪   离散余弦变换   数据驱动     
Abstract: The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the transform base function domain. However, the effect is not satisfactory because it needs to pre-select a set of fixed transform-base functions and process the corresponding transform. In order to find a new approach, we introduce learning-type overcomplete dictionaries, i.e., optimally sparse data representation is achieved through learning and training driven by seismic modeling data, instead of using a single set of fi xed transform bases. In this paper, we combine dictionary learning with total variation (TV) minimization to suppress pseudo-Gibbs artifacts and describe the effects of non-uniform dictionary sub-block scale on removing noises. Taking the discrete cosine transform and random noise as an example, we made comparisons between a single transform base, non-learning-type, overcomplete dictionary and a learning-type overcomplete dictionary and also compare the results with uniform and nonuniform size dictionary atoms. The results show that, when seismic data is represented sparsely using the learning-type overcomplete dictionary, noise is also removed and visibility and signal to noise ratio is markedly increased. We also compare the results with uniform and nonuniform size dictionary atoms, which demonstrate that a nonuniform dictionary atom is more suitable for seismic denoising.
Key wordslearning-type overcomplete dictionary   seismic denoising   discrete cosine transform   data-driven   
收稿日期: 2009-12-31;
基金资助:

本工作由国家973项目(2007CB209505),中国石油天然气集团公司“十二五”基础研究项目“物探新方法新技术研究”(2011A-3601)和中国石油勘探开发研究院青年创新基金(No. 2010-A-26-01)资助。

引用本文:   
唐刚,马坚伟,杨慧珠. 基于学习型超完备字典的地震数据去噪[J]. 应用地球物理, 2012, 9(1): 27-32.
TANG Gang,MA Jian-Wei,YANG Hui-Zhu. Seismic data denoising based on learning-type overcomplete dictionaries*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 27-32.
 
[1] Broadhead, M., 2008, The impact of random noise on seismic wavelet estimation: The Leading Edge, 27(2),
[2] 6 - 230.
[3] Candes, E., and Donoho, D., 2002, New tight frames of curvelets and optimal representations of objects
[4] with smooth singularities: Technical Report, Stanford University.
[5] Deng, C. Z., 2008, Research on image sparse representation theory and its applications: PhD Thesis, Huazhong
[6] University of Science and Technology.
[7] Elad, M., and Aharon, M., 2006, Image denoising via sparse and redundant representations over learned dictionaries:
[8] IEEE Trans. Image Process, 15(12), 3736 - 3745.
[9] Herrmann, F., and Hennenfent, G., 2008, Non-parametric seismic data recovery with curvelet frames: Geophys. J.
[10] Int., 173, 233 - 248.
[11] Meyer, F. G., 1999, Fast compression of seismic data with local trigonometric bases, in Aldroubi, A., Laine, A., and
[12] Unser, M., Eds., Wavelet VII: Proc. SPIE 3813, 648 - 658.
[13] Protter, M., and Elad, M., 2009, Image sequence denoising via sparse and redundant representations: IEEE Trans.
[14] Image Process, 18(1), 27 - 35.
[15] Shan, H., Ma, J. W., and Yang, H. Z., 2009, Comparisons of wavelets, contourlets and curvelets in seismic denoising:
[16] Journal of Applied Geophysics, 69, 103 - 115.
[17] Tang, G., and Ma, J. W., 2009, Application of total variation based curvelet shrinkage for three-dimensional seismic
[18] data denoising: IEEE Geosci. Remote Sensing Lett. 8(1), 103 - 107.
[19] van den Berg, E., and Friedlander, M., 2008, Probing thePareto frontier for basis pursuit solutions: SIAM J.
[20] Scientific Computing, 31(2), 890 - 912.
[21] Wang, Y., and Wu, R., 2000, Seismic data compression by an adaptive local cosine/sine transform and its effects on
[22] migration: Geophysical Prospecting, 48, 1009 - 1031.
[23] Xiao, Q., Deng, X. H., Wang, S. J., et al., 2009, Image denoising based on adaptive over-complete sparse
[24] representation: Chinese Journal of Scientific Instrument, 30(9), 1886 - 1890.
[25] Zhang, C. M., Yin, Z. K., and Xiao, M. X., 2006, Overcomplete representation and sparse decomposition
[26] of signals based on redundant dictionary: Chinese Science Bulletin, 51(6), 628 - 632.
[27] Zheludev, A. V. A., Koslo, B., Dan, D., and Ragoza, E. Y., 2004, On compression of segmented 3D seismic data:
[28] International Journal of Wavelets, Multiresolution and Information Processing, 2(3), 269 - 281.
[1] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[2] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司