APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 33-40    DOI: 10.1007/s11770-012-0311-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于波场传播方向的波动方程偏移有效去噪方法
叶瑞超1,贾晓峰1
中国科学技术大学地球和空间科学学院,合肥 230026
An effective denoising strategy for wave equation migration based on propagation angles*
Ye Rui-Chao1 and Jia Xiao-Feng1
School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
 全文: PDF (1136 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文研究分析了双程波波动方程偏移成像中广泛存在的三种主要噪声,特别是针对过去研究中没能很好解决的存在于高速盐丘悬垂边界附近的射线状噪声,提出了基于优化成像条件的有效去噪方法。射线状噪声主要来自于震源一侧波场的下行透射波分量和接收阵列一侧波场的上行散射波互相关成像。这一部分能量具有较强的互相关性,但并不携带真实的反射面信息。它广泛存在叠前偏移成像中,与信号在强度上同量级。多数情况下偏移成像中的相关噪声由方向性传播的波场能量产生。利用波场梯度得到的波场传播角度,可以分离出噪声对应的波场能量,并在成像条件中减去。采用这一方法可以有效地去除多种噪声,包括直达波噪声、散射波噪声和射线状噪声。该去噪方法不依赖波场外推算子,在需要时可以方便地运用到几乎所有的波动方程偏移中去。并且该去噪方法针对噪声的物理根源,对信号的损害很小。对去噪后的偏移成像结果额外地进行波数域滤波处理,可以进一步提高叠加图像的质量。这一去噪方法在超广角单程波偏移成像中取得良好效果,我们同时期待其在其他双程波波动方程偏移特别是逆时偏移(RTM)中的成功运用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶瑞超
贾晓峰
关键词:   
Abstract: We present an effective denoising strategy for two-way wave equation migration. Three dominant artifact types are analyzed and eliminated by an optimized imaging condition. We discuss a previously unsolved beam-like artifact, which is probably caused by the cross-correlation of downward transmitting and upward scattering waves from both the source and receiver side of a single seismic shot. This artifact has relatively strong crosscorrelation but carries no useful information from refl ectors. The beam-like artifact widely exists in pre-stack imaging and has approximately the same amplitude as useful seismic signals. In most cases, coherent artifacts in the image are caused by directionally propagating energy. Based on propagation angles obtained by wavefi eld gradients, we identify the artifact energy and subtract its contribution in the imaging condition. By this process most artifacts can be accurately eliminated, including direct wave artifacts, scattering artifacts, and beamlike artifacts. This method is independent of the wavefi eld propagator and is easy to adapt to almost all current wave equation migration methods if needed. As this method deals with the physical artifact origins, little damage is caused to the seismic signal. Extra k-domain filtering can additionally enhance the stacking result image quality. This method succeeds in the super-wide-angle one-way migration and we can expect its success in other two-way wave equation migrations and especially in reverse time migration.
Key wordsMigration artifact   propagation angles   wavefield gradient   imaging condition   k-domain filter   
收稿日期: 2011-08-18;
基金资助:

本研究由中国国家自然科学基金 ( No. 41004045) 和中国科学院知识创新工程项目 (No. KZCX2-EW-QN503) 资助。

通讯作者: 贾晓峰:中国科学技术大学地球和空间科学学院 xjia@ustc.edu.cn     E-mail: xjia@ustc.edu.cn
引用本文:   
叶瑞超,贾晓峰. 基于波场传播方向的波动方程偏移有效去噪方法[J]. 应用地球物理, 2012, 9(1): 33-40.
YE Rui-Chao,JIA Xiao-Feng. An effective denoising strategy for wave equation migration based on propagation angles*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 33-40.
 
[1] Aki, K., and Richards, P., 1980, Quantitative seismology, Theory and methods, vol. 1: Freeman and Co., San Francisco.
[2] Chen, L., Wu, R. S., and Chen, Y., 2006, Target-oriented beamlet migration based on Gabor-Daubechies frame
[3] decomposition: Geophysics, 71(2), S37 - S52.
[4] Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467 - 481.
[5] De Hoop, M., Le Rousseau, J., and Wu, R. S., 2000, Generalization of the phase screen approximation for the scattering of acoustic waves: Wave Motion, 31, 43 - 70.
[6] Gray, S. H., 2001, Y2K Review Article, Seismic migration problems and solutions: Geophysics, 66, 1622 - 1640.
[7] Hale, D., Hill, N. R., and Stefani, J., 1992, Imaging salt with turning seismic waves: Geophysics, 57, 1453 - 1462.
[8] Hill, N. R., Watson, T. H., Hassler, M. H., and Sisemore, L. K., 1991, Salt-flank imaging using Gaussian beam migration:
[9] st Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1178 - 1180.
[10] Jia, X. F., and Wu, R. S., 2007, Imaging steep salt flanks by super-wide angle oneway method: 77th Ann. Internat. Mtg.,
[11] Soc. Explor. Geophys., Expanded Abstracts, 2265 - 2269.
[12] Jia, X. F., and Wu, R. S., 2009a, Calculation of the wave propagation angle in complex media, application
[13] to turning wave simulations: Geophysical Journal International, 178, 1565 - 1573.
[14] Jia, X. F., and Wu, R. S., 2009b, Super-wide angle one-way wave propagator and its application in imaging steep salt
[15] flanks: Geophysics, 74(4), S75 - S83.
[16] Jin, S., Xu, S., and Walraven, D., 2006, One-return wave equation migration: Imaging of duplex waves: 76th
[17] Ann, Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2338 - 2342.
[18] Liu, F., Zhang, G., Morton, S. A., and Leveille, J. P., 2007, Reverse-time migration using one-way wavefield
[19] imaging condition: 77th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2170 - 2174.
[20] Liu, H. W., Liu, H., Zou, Z., and Cui, Y. F., 2010, The problems of denoise and storage in seismic reverse time migration:
[21] Chinese J. Geophysics, (in Chinese), 53(9), 2171 - 2180.
[22] Luo, M. Q., Cao, J., Xie, X. B., and Wu, R. S., 2004, Comparison of illumination analyses using one-way and
[23] full-wave propagators: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 67 - 70.
[24] Wilson, D., and Aster, R., 2005, Seismic imaging of the crust and upper mantle using regularized joint receiver
[25] functions, frequency-wave number filtering, and multimode Kirchhoff migration: Journal of Geophysical
[26] Research, 110, B05305.
[27] Wu, R. S., 1994, Wide-angle elastic wave one-way propagator in heterogeneous media and an elastic
[28] wave complex-screen method: Journal of Geophysical Research, 99, 751 - 766.
[29] Wu, R. S., 1996, Synthetic seismograms in heterogeneous media by one-return approximation: Pure and Applied
[30] Geophysics, 148, 155 - 173.
[31] Wu, R. S., and de Hoop, M. V., 1996, Accuracy analysis and numerical tests of screen propagators for wave
[32] extrapolation: Mathematical Methods in Geophysical Imaging IV, SPIE, 2822, 196 - 209.
[33] Wu, R. S., and Jia, X. F., 2006, Accuracy improvement for super-wide angle one-way waves by wavefront
[34] reconstruction: 76th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2976 - 2980.
[35] Wu, R. S., Wang, Y., and Gao, J., 2000, Beamlet migration based on local perturbation theory: 70th Ann. Internat. Mtg.,
[36] Soc. Explor. Geophys., Expanded Abstracts, 1008 - 1011.
[37] Wu, R. S., Wang, Y., and Luo, M., 2008, Beamlet migration using local cosine basis: Geophysics, 73(5), S207 - S217.
[38] Wu, R. S., and Aki, K., 1985, Scattering characteristics of waves by an elastic heterogeneity: Geophysics, 50, 582 - 595.
[39] Wu, R. S., and Flatte, S. M., 1990, Transmission fluctuations of seismic waves across seismic arrays: in Seismic Wave
[40] Scattering and Attenuation, Wu, R. S., and Aki, K., Eds., Pure and Applied Geophys., 132, 175 - 196.
[41] Wu, R. S., and Huang, L. J., 1992, Scattered field calculation in heterogeneous media using phase-screen
[42] propagator: 62nd Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1289 - 1292.
[43] Wu, R. S., 1998, The perturbation method for elastic wave scattering: in Seismic Wave Scattering and Attenuation, Wu, R. S. and Aki, K., Eds., Pure and Applied Geophys., 131, 605 - 637.
[44] Xie, X. B., and Wu, R. S., 1998, Improve the wide angle accuracy of screen method under large contrast: 68th Ann. Internat. Mtg, Soc. Explor. Geophys., Expanded Abstracts, 1811 - 1814.
[45] Xu, S., and Jin, S., 2006, Wave equation migration of turning waves, 76th Ann. Internat. Mtg., Soc. Explor.
[46] Geophys., Expanded Abstracts, 2328 - 2332.
[47] Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics,
[48] (1), 102 - 107.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司