APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 614-620    DOI: 10.1007/s11770-016-0594-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于相移和相位滤波的面波压制方法
王德营,凌云
中国石油集团东方地球物理勘探有限责任公司,河北涿州 072751
Phase-shift- and phase-filtering-based surface-wave suppression method
Wang De-Ying1 and Ling Yun1
This work was supported by the National Natural Science Foundation of China (No. 41274124) and the National Science and Technology Major Project (No. 2016ZX05014-001-008HZ).
 全文: PDF (786 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 三维地震空间采样间隔偏大造成面波往往存在假频,给面波压制方法带来困难。本文提出对地震记录进行线性相移处理,解决假频面波与有效信号FKXKY 域混叠的问题;通过相位滤波和FKXKY 滤波逐次衰减面波能量,对存在空间假频的面波能量具有较好的压制效果。理论模型数据和实际数据处理表明:基于相移和相位滤波的面波压制方法能够消除面波及其假频能量,同时保护了有效信号低频能量。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐冬
胡祥云
单春玲
李睿恒
关键词面波压制   假频   相移   相位滤波   FKXKY滤波     
Abstract: Aliased surface waves are caused by large-space sampling intervals in three-dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY  filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.
Key wordssurface-wave suppression   alias   phase-shift   phase-filtering   FKXKY filtering   
收稿日期: 2016-09-06;
基金资助:

本研究由国家自然科学基金(编号:41274124)和国家重大专项课题(编号:2016ZX05014-001-008HZ)联合资助。

引用本文:   
徐冬,胡祥云,单春玲等. 基于相移和相位滤波的面波压制方法[J]. 应用地球物理, 2016, 13(4): 614-620.
Xu Dong,Hu Xiang-Yun,Dan Chun-Ling et al. Phase-shift- and phase-filtering-based surface-wave suppression method[J]. APPLIED GEOPHYSICS, 2016, 13(4): 614-620.
 
[1] Chen, H. F., Li, X. Y., Qian, Z. P., et al., 2013, Robust adaptive polarization analysis method for eliminating ground roll in 3C land seismics: Applied geophysics, 10(3), 295−304.
[2] Dobrin, M. D., 1951, Dispersion in seismic surface waves: Geophysics, 16(1), 63−80.
[3] Embree, P., Burg, J. B., and Backus, M. M., 1963, Wide-band velocity filtering—the pie-slice process: Geophysics, 28(6), 948−974.
[4] Ernst, F. E., Herman, G. C., and Ditzel, A., 2002, Removal of scattered guided waves from seismic data: Geophysics, 67(4), 1240−1248.
[5] Foti, S., Sambuelli, L., Socco, L. V., et al., 2002, Spatial sampling issues in FK analysis of surface waves:15th Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), 12SEI6.
[6] Figueiredo, P., Lucena, L., and Araujo, G., 2009, Filter KL/SVD for ground-roll noise attenuation: 11th International Congress of the Brazilian Geophysics Society, Expand Abstracts, 1637−1640.
[7] Kirchheimer, F., 1985, On some further aspects of fan filtering: 55th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 635−638.
[8] Krohn, C. E., and Routh, P. S., 2016, Exploiting surface consistency for surface-wave characterization and mitigation—Part 1: Theory and 2D examples: Geophysics, 82(1), V21−V37.
[9] Liu, X., 1999, Ground-roll suppression using the Karhunen-Loeve transform: Geophysics, 64(2), 564−566.
[10] Lu, J., Wang, Y., and Yang, C. Y., 2010, Instantaneous polarization filtering focused on suppression of surface waves: Applied Geophysics, 7(1), 88−97.
[11] Sengbush, R. L., and Foster, M. R., 1968, Optimum multichannel velocity filters: Geophysics, 33(1), 11−35.
[12] Sharpe, J. A., 1944, The effect of charge size on reflection records: Geophysics, 9(2), 131−142.
[13] Shieh, C. F., and Herrmann, R. B., 1990, Ground roll: Rejection using polarization filters: Geophysics, 55(9), 1216−1222.
[14] Strobbia, C., Zarkhidze, A., May, R., et al., 2011, Attenuation of aliased coherent noise: modelbased attenuation for complex dispersive waves: First Break, 29(8), 93−100.
[15] Tan, Y. Y., He, C., Wang, Y. D., et al., 2013, Ground roll attenuation using a time-frequency dependent polarization filter based on the S transform: Applied Geophysics, 10(3), 279−294.
[16] Treitel, S., Shanks, J. L., and Frasier, C. W., 1967, Some aspects of fan filtering: Geophysics, 32(5), 789−800.
[17] Turner, G., 1990, Aliasing in the tau-p transform and the removal of spatially aliased coherent noise: Geophysics, 55(11), 1496−1503.
[18] Xu, X. H., Qu, G. Z., Zhang, Y., et al., 2016, Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain: Applied Geophysics, 13(1), 116−126.
[19] Verma, S., Guo, S., Ha, T., et al., 2016, Highly aliased ground-roll suppression using a 3D multiwindow Karhunen-Loeve filter: Application to a legacy Mississippi Lime survey: Geophysics, 81(1), V79−V88.
[1] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[2] 袁焕,胡自多,刘朝,马坚伟. 基于经验曲波变换的面波压制方法[J]. 应用地球物理, 2018, 15(1): 111-117.
[3] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[4] 李子顺. 高密度偏移技术原理与应用[J]. 应用地球物理, 2012, 9(3): 286-292.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司