APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 721-735    DOI: 10.1007/s11770-016-0593-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于航磁资料揭示智利北部区域成矿构造
朱小三,卢民杰
中国地质科学院地质研究所,北京100037
Regional metallogenic structure based on aeromagnetic data in northern Chile
Zhu Xiao-San1 and Lu Min-Jie1
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.
 全文: PDF (1516 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 智利是安第斯成矿带最重要的矿业国家之一,智利北部阿卡塔玛和东部多明戈断裂系统控制了智利自西向东迁移的构造—岩浆活动和成矿类型。本文对智利北部航磁数据进行网格化、化极、向上延拓、垂向二次导数、倾斜角以及解析信号振幅处理,并对处理结果进行解释,揭示了研究区沿北北东向和南北向区域性深大断裂构造的位置和平面分布特征,确定了自西向东近于平行的断裂构造和多次岩浆活动是导致构造—岩浆岩分带性的主要原因;查明了研究区火山机构的分布位置及其与深大断裂的关系;推断了基性—中基性和酸性火山岩层、侵入岩相以及沉积岩序列分布的空间范围;展示了在低缓的背景负磁异常场上发育了线性正磁异常和磁异常梯级带,反映了沿深大断裂产生了强烈的岩浆岩活动,揭示了铜、多金属成矿的有利区带,为智利北部地区的地质、构造特征研究以及找矿远景区的圈定提供了基础性信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词安第斯成矿带   航磁异常   阿卡塔玛断裂系统   多明戈断裂系统   构造解释   火山机构     
Abstract: Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic–magmatic activities that migrate eastward and the types of mineral resources. In this paper, we processed and interpreted aeromagnetic data from northern Chile using reduction to pole, upward field continuation, the second derivative calculation in the vertical direction, inclination angle calculation, and analytical signal amplitude analysis. We revealed the locations and planar distribution characteristics of the regional deep faults along the NNE and NS directions. Furthermore, we observed that the major reasons for the formation of the tectonic–magmatic rocks belts were the nearly parallel deep faults distributed from west to east and multiple magmatic activities along these faults. We ascertained the locations of volcanic mechanisms and the relationships between them using these regional deep faults. We deduced the spatial distributions of the basic–intermediate, basic, and acidic igneous rocks, intrusive rocks, and sedimentary sequences. We showed the linear positive magnetic anomalies and magnetic anomaly gradient zones by slowly varying the background, negative magnetic anomaly field, which indicated the presence of strong magmatic activities in these regional deep faults; it also revealed the favorable areas of copper and polymetallic mineralization. This study provides some basic information for further research on the geology, structural characteristics, and mineral resource prospecting in northern Chile.
Key wordsAndean metallogenic belt   aeromagnetic anomaly   Atacama fault system   Domeyko fault system   structural interpretation   volcanic mechanism   
收稿日期: 2016-04-14;
基金资助:

本研究由中国地质调查局境外地质调查项目“安第斯巨型成矿带重要矿床地质背景、成矿作用和找矿潜力研究”(编号:DD20160102-02)和国家自然科学基金项目“基于深反射地震资料探讨扬子古陆块和华夏古陆块元古代碰撞造山带”(编号:41404070)联合资助。

引用本文:   
. 基于航磁资料揭示智利北部区域成矿构造[J]. 应用地球物理, 2016, 13(4): 721-735.
. Regional metallogenic structure based on aeromagnetic data in northern Chile[J]. APPLIED GEOPHYSICS, 2016, 13(4): 721-735.
 
[1] Al Kadasi, A. N., 2015, Interpretation of aeromagnetic data in terms of surface and subsurface geologic structures, southwestern Yemen: Arab J. Geosci., 8, 1163-1179.
[2] Armijo, R., and Thiele, R., 1990, Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary?: Earth and Planetary Science Letters, 98, 40−61.
[3] Brown, M., Diáz, F., and Grocott, J., 1993, Displacement history of the Atacama fault system 25°S-27°S, northern Chile: Geological Society of America Bulletin, 105, 1165−1174.
[4] Camus, F., and Dilles, J. H., 2001, Special issue devoted to porphyry copper deposits of northern Chile: Preface. Economic Geology, 96, 233-237.
[5] Chorowicz, J., Vicente, J. C., Chotin, P., and Mering, C., 1996, Neotectonic map of the Atacama Fault Zone (Chile) from SARS ERS-1 images: Third ISAG, 165-168.
[6] Elderry, S. M., Diaz, G. C., Prior, D. J., and Flint, S. S., 1996, Structural styles in the Domeyko range, northern Chile: Third ISAG, St Malo (France), 9, 17−19.
[7] Eppelbaum, L. V., 2015, Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments: Environ Earth Sci., 74, 5971-5988.
[8] Fang, W. X., and Li, J. X., 2014, Metallogenic regulations, controlling factors, and evolutions of iron oxide copper and gold deposits in Chile: Advances in Earth Science, 29(9), 1011−1024. (in Chinese with English abstract).
[9] Fu, C. C., 2013, Geological characteristics, metallogenic mechanism and prospecting direction of the MANUEL copper deposit: Journal of East China Institute of Technology, 36(s1), 15−19 (in Chinese with English abstract).
[10] He, M. S., Tang, K., and Zou, G. S., 2014, Geological characteristics and metallogenic regularity of the porphyry copper deposits in Chile: Geology and Resources, 23(3), 305−310 (in Chinese with English abstract).
[11] Hinze, W. J., and Von Frese, R. R. B., 1990, Magnetics in geoexploration: Proc. India Acad. Sci. (Earth Planet Sci.), 99(4), 515−547.
[12] Huang, L. P., and Guan, Z. N., 1998, The determination of magnetic causative boundaries using total gradient modules of magnetics anomalies: Journal of East China Geological Institute, 21(2), 143−150 (in Chinese with English abstract).
[13] Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., and Arancibia, G., 1996, Development of a self-similar strike-slip duplex system in the Atacama Fault system, Chile: Journal of Structural Geology, 33(11), 1611-1626.
[14] Li, J. X., and Fang, W. X., 2011, Control of structure and magma for Iron Oxide copper gold and porphyry Copper gold deposits: China Mining Magazine, 20(10), 57−61 (in Chinese with English abstract).
[15] Li, J. X., Fang, W. X., and Liu, J. J., 2009, The strike-slip expansion and ore controlling of the Atacama fault zone in Chile: Journal of Mineral, (suppl), 180−181 (in Chinese with English abstract).
[16] Li, J. X., Fang, W. X., and Liu, J. J., 2011a, Types and characteristics of regional tectonic and ore-field structures of iron oxide-copper-gold deposits in Chile: Geology and Exploration, 47(2), 323−332 (in Chinese with English abstract).
[17] Li, J. X., Zhang, H. Y., and Gao, H. O., 2011b, Geological characteristics and ore marks for prospecting of Los Quilos copper deposit in Chile: Contribution to Geology and Mineral Resources Research, 26(1), 85−59 (in Chinese with English abstract).
[18] Li, T. C., Yang, X. Y., Peng, X. M., Hu, L. G., Wang, L., and Chen, J. L., 2015, Geological characteristics and prospecting criteria of the magnetite deposits in Cerro Iman-Cerro Lunar -Cerro Norte area, central-northern Chile: Mineral Exploration, 6(1), 77−85 (in Chinese with English abstract).
[19] Liu, Y. X., 2007, Evaluation and extraction of weak gravity and magnetic anomalies: Applied Geophysics, 4(4), 288−293.
[20] Liu, Y. X., He, Z. X., Zhang, B. T., Dong, W. B., and Li, D. C., 2006, Integrated geophysical technique for identification of igneous rocks: Progress in Exploration Geophysics, 29(2), 115−118 (in Chinese with English abstract).
[21] Lu, J., Fang, W. X., and Li, T. C., 2013, Analysis on relationships between Magnetic susceptibility and density of rock and ore in the Moon mountain iron copper deposit in Chile: Metal Mine, 445, 105−108 (in Chinese with English abstract).
[22] Lucassen, F., Becchio R., Harmon, R., Kasemann, S., Franz, G., Trumbull, R., Wilke H. G., Romer, R. L., and Dulski, P., 2001, Composition and density model of the continental crust at an active continental margin - the Central Andes between 21S and 27S: Tectonophysics, 341, 195−223.
[23] Mei, Y. X., Pei, R. F., Yang, D. F., Da, Z. X., Li, J. W., Xu, C. R., and Qu, H. Y., 2009, Global metallogenic domains and districts: Mineral Deposits, 28(4), 383−389 (in Chinese with English abstract).
[24] Miller, H. G., and Singh, V., 1994, Potential field tilt-A new concept for location of potential field source: Journal of Applied Geophysics, 32(2), 213−217.
[25] Niemeyer, H., and Urrutia, C., 2009, Strike-slip along the Sierra de Varas Fault (Cordillera de Domeyko Fault-System), northern Chile: Andean Geology, 36(1), 37−49 (in Spanish).
[26] Ranganai, R. T., Whaler, A. A., and Ebinger, C. J., 2015, Aeromagnetic interpretation in the south?central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications: International Journal of Earth Sciences (GeolRundsch), 1−27.
[27] Ren, A. J., Jin, Q. M., Jing, F. J., and Liang, Y., 1993, Mesozoic tectonic evolution of southern Andes: Volcanology and Mineral Resources, 14(4), 126 (in Chinese with English abstract).
[28] Richards, J. P., Boyce, A. J., and Pringle, M. S., 2001, Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization: Economic Geology, 96, 271-306.
[29] Scheuber, E., 1990, The kinematic and geodynamic significance of the Atacama Fault Zone, Northern Chile: Journal of Structural Geology, 12(2), 243-257.
[30] Susie, M. E., Guilermo, C. D., David, J. P., and Stephen, S. F., 1996, Structural styles in the Domeyko range, northern Chile: Third ISAG, St Malo (France), 9, 17−19.
[31] Taylor, G. K., Grocott, J., Pope, A., and Randall, D. E., 1998, Mesozoic fault systems, deformation and fault block rotation in the Andean forearc: a crustal scale strike-slip duplex in the Coastal Cordillera of northern Chile: Tectonophysics, 299, 93−109.
[32] Thébault, E., Purucker, M., Whaler, K. A., Langlais, B., and Sabaka, T. J., 2010, The magnetic field of the earth’s lithosphere: Space Sci. Rev., 155, 95−127.
[33] Wang, L., Li, T. C., and Yang, X. Y., 2012, Application of borehole core magnetic susceptibility and PXRF measurement to the Moon mountain copper-iron mining area in Chile and prospecting prediction: Geology and Exploration, 48(2), 396−405 (in Chinese with English abstract).
[34] Wang, W. Y., 2012, Spatial variation law of the extreme value position of analytical signal amplitude for potential field data: Chinese Journal of Geophysics, 55(4), 1288−1299 (in Chinese).
[35] Wang, W. Y., Feng, X. L., Gao, L. J., Wang, P. F., and Liu, B., 2014a, The application of gravity and magnetic techniques to the prospectiong for the Tuerkubanto copper-nickel ore district: Geophysical and Geochemical Exploration, 38(3), 423−429 (in Chinese with English abstract).
[36] Wang, W. Y., Pan, Y., and Qiu, Z. Y., 2009, A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data: Applied Geophysics, 6(3), 226−233.
[37] Wang, W. Y., Wang, Y. P., Li, J. G., Liu, J. L., Zhao, B., and Zhou, X. P., 2014b, Study on the faults structure and granite body distribution in Pangshan area of Yudu-Ganxian ore district using gravity and magnetic data: Geophysical and Geochemical Exploration, 38(4), 825−834 (in Chinese with English abstract).
[38] Wang, W. Y., Zhang, G. C., and Liang, J. S., 2010, Spatial variation law of vertical derivative zero points for potential field data: Applied Geophysics, 7(3), 197−209.
[39] Wei, Y. Q., Ni, W. C., and Fang, J. Q., 2016, The application of the edge enhancement methods to aeromagnetic data processing: Geophysical and Geochemical Exploration, 40(1), 117−124 (in Chinese with English abstract).
[40] Zhang, P., Wang, D. Y., and Zhi, H. N., 2014, A study of tracking the concealed magnetic body in airbone magnetic survey: Geophysical and Geochemical Exploration, 38(1), 1−9 (in Chinese with English abstract).
[41] Zhou, J. F., and Wu, J. T., 1983, Magnetic anomaly and continental volcanic mechanism: Geology and Exploration, 1, 49−56 (in Chinese).
[42] Zhou, L. X., Zhou, J., and Jia, C. S., 2010, The Mesozoic stratabound type copper (sliver) deposits in the coastal range of middle and northern Chile: Mineral Exploration, 1(4), 393−399 (in Chinese with English abstract).
[1] 熊盛青,佟晶,丁燕云,李占奎. 中国陆域航磁与地质构造研究综述[J]. 应用地球物理, 2016, 13(2): 227-237.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司