APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 621-630    DOI: 10.1007/s11770-016-0582-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
煤巷三维槽波全波场数值模拟与波场特征分析
杨思通1,魏久传1,程久龙2,施龙青1,文志杰3
1. 山东省沉积成矿作用与沉积矿产重点实验室,山东科技大学地球科学与工程学院,山东青岛 266590;
2. 中国矿业大学煤炭资源与安全开采国家重点实验室,北京 100083;
3. 矿山灾害预防控制省部共建国家重点实验室培育基地,山东青岛 266590
Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models
Yang Si-Tong1, Wei Jiu-Chuan1, Cheng Jiu-Long2, Shi Long-Qing1, and Wen Zhi-Jie3
1. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, College of Earth Sciences & Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China.
3. Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science & Technology, Qingdao 266590, China.
 全文: PDF (1397 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 当前煤巷地震槽波超前探测数值模拟主要以二维波场研究为主,难以精确模拟三维全波场特征和全空间观测方式接收的地震记录。本文应用三维弹性波动方程的交错网格有限差分算法模拟了在巷道迎头前方煤层中以纵波震源激发的三维全波场。采用取平均值的办法实现了交错网格地震波场模拟的振动速度三分量同点记录。查明了三维顶底板对称煤巷模型和非对称模型中传播的波型及其传播特征。研究发现巷道迎头前方煤层内Rayleigh型槽波能量较强,Love型槽波能量较弱,煤层内巷道迎头反射Rayleigh型槽波在煤层顶、底板中泄露能量较小,在煤层中传播距离较远;在巷道周围存在巷道面波和折射头波;在煤巷两侧煤层内接收的地震记录中Rayleigh型槽波能量较强,受头波和面波的干扰较弱,而Love型槽波能量较弱,受到相对强能量头波和面波干扰,难以识别;增加接收点在煤层中的深度可以有效降低面波对Rayleigh型槽波的干扰,但不能有效减弱面波对Love型槽波的干扰。基于以上波场认识,发现传统的采煤工作面Love型槽波构造探测方法难以适用于掘进煤巷构造超前探测,Rayleigh型槽波可以用于掘进煤巷构造超前探测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词槽波   三维波场   数值模拟   煤巷   超前探测     
Abstract: Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two-dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity–stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
Key wordsChannel wave   3-D wave field   Numerical simulation   Coal mine roadway   Advance detection   
收稿日期: 2016-08-21;
基金资助:

本研究由国家自然科学基金(编号:41204077、41372290、41572244、51034003、51174210和51304126)、山东省自然科学基金(编号:ZR2011EEZ002和ZR2013EEQ019)和国家重点研发计划项目(编号:2016YFC0600708-3)联合资助。

引用本文:   
. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models[J]. APPLIED GEOPHYSICS, 2016, 13(4): 621-630.
 
[1] Bakku, S., Fehler, M., and Burns, D., 2013, Fracture compliance estimation using borehole tube waves: Geophysics, 78(4), 249−260.
[2] Bohlen, T., 1998, Interpretation of measured seismograms by means of viscoelastic finite difference modeling: PhD thesis, Kiel University, Germany.
[3] Buchanan, D. J., 1986, The scattering of SH-channel waves by a fault in a coal seam: Geophysical Prospecting, 34(3), 343−365.
[4] Buchanan, D. J., Jackson, P. J., Taylor, P. M., and Doyle, J. F., 1981, The use of channel wave seismology to find faults in coal seams: Proceedings of the 50th SEG Meeting, Houston, 2985−3018.
[5] Crase, E., 1990, High-order (space and time) finite-difference modeling of the elastic wave equation: SEG Technical Program Expanded Abstracts, 987−991.
[6] Dresen L., and Ruter H., 1994, Seismic coal exploration, Part B: in-seam seismic: Pergamon Pr., New York.
[7] Essen, K., Bohlen, T., Friederich, W., and Meier, T., 2007, Modelling of Rayleigh-type seam waves in disturbed coal seams and around a coal mine roadway: Geophys. J. Int., 170(2), 511−526.
[8] Evison, F. F., 1955, A coal seam as a guide for seismic for seismic energy: Nature, 176(4495), 1224−1225.
[9] Hatherly, P. J., 1987, Coal seam mapping by underground in-seam seismic survey: Geoexploration, 24(4−5), 285−294.
[10] Hu, Y. R., and McMechan, G. A., 2007, Imaging mining hazards within coalbeds using prestack wave equation migration of in-seam seismic survey data: A feasibility study with synthetic data: Journal of Applied Geophysics, 63(1), 24−34.
[11] Jetschny, S., Bohlen, T., and Kurzmann, A., 2011, Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves: Geophysical Prospecting, 59(5), 934−946.
[12] Krey, T. C., 1963, Channel waves as a tool of applied geophysics in coal seam mining: Geophysics, 28(5), 701−704.
[13] Levander, A. R., 1988, Four-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425−1436.
[14] Liu, T. F., Pan, D. M., Li, D. C., and Li, H. Y., 1994, Channel wave seismic exploration (in Chinese): China University of Mining and Technology press, Xuzhou, China.
[15] Liu, Z. G., and Liu, X. F., 2003, TSP application and development in tunnel lead forecast: Chinese Journal of Rock Mechanics and Engineering (in Chinese), 22(8), 1399−1402.
[16] Qin, Z., Lu, M. H., Zheng, X. D., Yao, Y., Zhang, C., and Song, J. Y., 2009, The implementation of an improved NPML absorbing boundary condition in elastic wave modeling: Applied Geophysics, 6(2), 113−121.
[17] Ricker, N., 1953, The form and laws of propagation of seismic wavelets: Geophysics, 18(1), 10−40.
[18] Tang, X. M., Qi, X., Zhang, B., Li, S. Q., and Su, Y. D., 2015, Aninterference-based array signal processing technique for cased-hole acoustic logging and applications: Chinese J. Geophys. (in Chinese), 58(4), 1447−1457.
[19] Tsang, L., and Kong, J. A., 1979, Asymptotic methods for the first compressional head wave arrival in a fluid-filled borehole: Journal of the Acoustical Society of America, 65(3), 647−654.
[20] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference methods: Geophysics, 51(4), 889−901.
[21] Xiao, K. H., 2012, Tunnel advanced prediction geophysical method and application research: PhD Thesis, (in Chinese), Chengdu University of Technology, China.
[22] Yang, S. T., and Cheng, J. L., 2012, The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation: Chinese J. Geophys. (in Chinese), 55(2), 655−662.
[23] Yang, X. H., Cao, S. Y., Li, D. C., Yu, P. F., and Zhang, H. R., 2014, Analysis of quality factors for Rayleigh channel waves : Applied Geophysics, 11(1), 107−114.
[24] Yang, Z., Feng, T., and Wang, S., 2010, Dispersion characteristics and wave shape mode of SH channel wave in 0.9 m-thin coal seam: Chinese J. Geophys. (in Chinese), 53(2), 442−449.
[25] Zeng, Z. H., 1994, Prediction ahead of the tunnel face by the seismic reflection methods: Chinese J. Geophys. (in Chinese), 37(2), 268−271.
[26] Zhang, H., L., Wang, X. M., and Zhang, B. X., 2004, Borehole acoustic field and wave: Science Press (in Chinese), Beijing, 33−34.
[27] Zhang, X. M., Zhang, H. L., and Wang, X. M., 2009, Leaky modes and their contributions to thecompressional head wave in a borehole excitedby a dipole source: Science in China, 52(5), 676−684.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 王保利. 基于多道约束的槽波波至时间自动拾取方法研究[J]. 应用地球物理, 2018, 15(1): 118-124.
[4] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[5] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[6] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[7] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[8] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[9] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[10] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[13] 杨小慧, 曹思远, 李德春, 于鹏飞, 张浩然. 瑞利型槽波品质因子及特性分析[J]. 应用地球物理, 2014, 11(1): 107-114.
[14] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[15] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司