APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 631-640    DOI: 10.1007/s11770-016-0584-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于贝叶斯理论的时频域联合AVO反演方法研究
宗兆云1,2,印兴耀1,2,李坤1,2
1. 中国石油大学(华东),青岛 266580
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
Joint AVO inversion in the time and frequency domain with Bayesian interference
Zong Zhao-Yun1,2, Yin Xing-Yao1,2, and Li Kun1,2
1. China University of Petroleum, Qingdao, Shandong 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 全文: PDF (961 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 AVO反演是获取地下介质弹性参数的重要手段。反演可在时间域或频率域实现,时间域反演稳定性好但分辨能力受限;频率域反演受益于有利频带的选择,分辨能力提高但反演结果容易受噪音影响。在贝叶斯反演理论框架下,提出了一种时间域和频率域联合的AVO反演方法。该方法在反演目标函数构建中融合了时间域和频率域信息的影响,假设待反演参数先验信息和似然函数分别服从柯西和高斯分布,考虑了待反演参数间的相关性,并采用模型约束提高了反演稳定性。模型测试表明,利用时频域联合反演得到的纵横波速度等弹性参数反射系数的频谱带宽要优于仅用时间域信息得到的结果,且合成地震记录信噪比为2时,仍可以得到较好的反演结果,验证了方法在保持稳定性的同时改善了分辨能力的优势。实际资料试处理进一步验证了方法的可行性及其相对单纯时间域或频率域反演的优势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词AVO反演   贝叶斯理论   时频域联合   弹性参数     
Abstract: Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.
Key wordsAVO inversion   Bayesian interference   time and frequency domain   elastic parameters   
收稿日期: 2016-04-25;
基金资助:

本研究由国家自然科学基金(编号:41604101和U1562215)、国家油气重大专项(编号:2016ZX05024-004)、山东省优秀中青年科学家奖励基金(编号:BS2014NJ005)和中央高校基本科研业务费专项资金和中石化地球物理重点实验室开放基金(编号:33550006-15-FW2099-0027)联合资助。

引用本文:   
. 基于贝叶斯理论的时频域联合AVO反演方法研究[J]. 应用地球物理, 2016, 13(4): 631-640.
. Joint AVO inversion in the time and frequency domain with Bayesian interference[J]. APPLIED GEOPHYSICS, 2016, 13(4): 631-640.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology: Theory and Methods, vol. 1&2. W. H. Freeman & Co., San Francisco USA.
[2] Alemie, W., and Sacchi, M. D., 2011, High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution: Geophysics, 76, R43−R55.
[3] Beretta, M. M., Bernasconi, G., and Drufuca, G., 2002, AVO and AVA inversion for fractured reservoir characterization: Geophysics, 67, 300−306.
[4] Blangy, J. P., 1994, AVO in transversely Isotropic media—An overview: Geophysics, 59, 775−781.
[5] Bodin, T., Leiva, J., Romanowicz, B., and Yuan, H., 2016, Imaging anisotropic layering with Bayesian inversion of mMultiple data types: Geophysical Journal International, 605−629.
[6] Buland, A., and Omre, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68, 185−198.
[7] Burnett, R. C., 1990, Seismic amplitude anomalies and AVO analyses at Mestena Grande Field, Jim Hogg Co., Texas: Geophysics, 55, 1015−1025.
[8] Chai, X, Wang, S., Wei, J., et al., 2016, Reflectivity inversion for attenuated seismic data: Physical modeling and field data experiments: Geophysics, 81, T11−T24.
[9] Daubechies, I., DeVore, R., and Fornasier, M., 2010, Iteratively reweighted least squares minimization for sparse recovery: Communications on Pure and Applied Mathematics, 63, 1−38.
[10] Downton, J. E., 2005, Seismic parameter estimation from AVO inversion: PhD thesis, University of Calgary.
[11] Grion, S., Mazzotti, A., and Spagnolini, U., 1998, Joint estimation of AVO and kinematic parameters: Geophysical Prospecting, 46, 405−422.
[12] Guo, R., and Wang, S., 2012, A spectral method for reflectivity estimation: Journal of Geophysics and Engineering, 9, 681−690.
[13] Hu, G., Liu, Y., Wei, X., and Chen, S., 2011, Joint PP and PS AVO inversion based on Bayes theorem: Applied Geophysics, 8, 293−302.
[14] Kurt, H., 2007, Joint inversion of AVA data for elastic parameters by bootstrapping: Computers & Geosciences, 33, 367−382.
[15] Landro, M., 1999, Discrimination between pressure and fluid saturation changes from time lapse seismic data: 69th Ann: Internat. Mtg., Soc. Expl. Geophys, Expanded Abstracts, 1651−1654.
[16] Lavaud, B., Kabir, N., and Chavent, G., 1999, Pushing AVO inversion beyond linearized approximation: Journal of Seismic Exploration, 8, 279−302.
[17] Li, J., 2012, Gas reservoir identifi cation by seismic AVO attributes on fluid substitution: Applied Geophysics, 9, 139−148.
[18] Liu, C., Li, B., Zhao, X., et al., 2014, Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media: Applied Geophysics, 11, 384−394.
[19] Ma, J., and Morozov, I. B., 2007, Structure of the Wollaston Lake Reflector (Trans-Hudson Orogen, Canada) from reflection AVO analysis: Fractured diabase intrusion, fluids, or silicified shear zone?: Tectonophysics, 441, 97−114.
[20] Martin, J., and Kolbjornsen, O., 2016, A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties: Geophysics, 81, R75−R87.
[21] Minato, S., and Ghose, R., 2016, AVO inversion for a non-welded interface: estimating compliances of a fluid-filled fracture: Geophysical Journal International, 206, 56−62.
[22] Ostrander, W. J., 1984, Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence: Geophysics, 49, 1637−1648.
[23] Rabben, T. E., Tjelmeland, H., and Ursin, B., 2008, Non-linear bayesian joint inversion of seismic reflection coefficients: Geophysical journal international, 173, 265−280.
[24] Russell, B. H., Gray, D., and Hampson, D. P., 2011, Linearized AVO and poroelasticity: Geophysics, 76, C19−C29.
[25] Symes, W. W., 2009, The seismic reflection inverse problem: Inverse Problems, 25(12), 2056-2075..
[26] Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: Society for Industrial Mathematics, American, 1−25.
[27] Tura, A., and Lumley, D. E., 1998, Subsurface fluid flow properties from time-lapse elastic wave reflection data: SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, 125−138.
[28] Ursin, B., and Tjäland, E., 1996, The information content of the elastic reflection matrix: Geophysical Journal International, 125, 214−228.
[29] Wu, X., Chapman, M., and Li, X. Y., 2014, Estimating seismic dispersion from prestack data using frequency-dependent AVO analysis: Journal of Seismic Exploration, 23, 219−239.
[30] Yi, B. Y., Lee, G. H., Horozal, S., Yoo, D. G., Ryu, B. J., Kang, N. K., Lee, S. R., and Kim, H. J., 2011, Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea): Marine and Petroleum Geology, 28, 1953−1966.
[31] Yin, X., Zong, Z., and Wu, G., 2015, Research on seismic fluid identification driven by rock physics: Science China Earth Sciences, 58, 159−171.
[32] Zong, Z., Yin, X., and Wu, G., 2012, Elastic impedance variation with angle inversion for elastic parameters: Journal of Geophysics and Engineering, 9, 247.
[33] Zong, Z., Yin, X., and Wu, G., 2013a, Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio: Geophysics, 78, N35−N42.
[34] Zong, Z., Yin, X., and Wu, G., 2013b, Multi-parameter nonlinear inversion with exact reflection coefficient equation: Journal of Applied Geophysics, 98, 21−32.
[35] Zong, Z., Yin, X., and Wu, G., 2015, Geofluid discrimination incorporating poroelasticity and seismic reflection inversion: Surveys in Geophysics, 36, 659− 681.
[1] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[2] 朱超, 郭庆新, 宫清顺, 刘占国, 李森明, 黄革萍. 基于Xu-White模型的致密储层叠前正演模拟研究与应用[J]. 应用地球物理, 2015, 12(3): 421-431.
[3] 印兴耀, 孙瑞莹, 王保丽, 张广智. 基于地质统计先验信息的储层物性参数同步反演[J]. 应用地球物理, 2014, 11(3): 311-320.
[4] 麻纪强, 耿建华. 基于Cauchy先验分布的AVO弹性参数弱非线性波形反演[J]. 应用地球物理, 2013, 10(4): 442-452.
[5] 黄捍东, 张如伟, 慎国强, 郭飞, 汪佳蓓. 叠前弹性参数一致性反演方法研究[J]. 应用地球物理, 2011, 8(4): 311-318.
[6] 贺芙邦, 游俊, 陈开远. 基于岩石物理分析的叠前弹性反演预测含气砂岩分布[J]. 应用地球物理, 2011, 8(3): 197-205.
[7] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 7(1): 1-9.
[8] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 6(1): 1-9.
[9] 牛滨华, 孙春岩, 闫国英, 杨维, 刘畅. 含气介质临界点、流体和骨架弹性参数的线性数值计算方法[J]. 应用地球物理, 2009, 6(4): 319-326.
[10] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司