APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 1-8    DOI: 10.1007/s11770-012-0307-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于主成分的时间域航空电磁数据神经网络反演仿真研究
朱凯光,马铭遥,车宏伟,杨二伟,嵇艳鞠,于生宝,林君
吉林大学仪器科学与电气工程学院,长春, 吉林, 130026, 中国 
PC-based artifi cial neural network inversion for airborne time-domain electromagnetic data*
Zhu Kai-Guang, Ma Ming-Yao, Che Hong-Wei,Yang Er-Wei, Ji Yan-Ju, Yu Sheng-Bao, and Lin Jun
Key Laboratory of Geo-exploration Instrumentation, College of Instrumentation and Electrical Engineering Changchun,Jilin University, Changchun, Jilin, 130026, China
 全文: PDF (682 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统上,时间域航空电磁数据通过拟合迭代反演计算得到大地模型,然而,由于航空电磁数据道间的较强相关性,导致病态反演,并引起超定问题;同时电磁数据的相关性使其与模型参数的映射关系复杂,增加了反演的复杂度。采用主成分分析法将航空电磁数据变换为正交的较少数量的主成分,不仅降低了数据道间的相关性,减小了数据量,同时压制了数据的不相关噪声。本文利用人工神经网络(ANN)逼近主成分与大地模型参数间的映射关系,避免了传统反演算法中雅克比矩阵的复杂计算。层状模型的主成分神经网络与数据神经网络的反演结果对比显示,主成分神经网络反演方法网络结构简单,训练步数少,反演结果好,特别是对于含噪数据。准二维模型的主成分ANN、数据ANN 以及Zohdy 方法的反演结果显示了主成分神经网络具有更接近真实模型的反演效果,进一步证明了主成分神经网络反演方法适合海量航空电磁探测数据反演。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱凯光
马铭遥
车宏伟
杨二伟
嵇艳鞠
于生宝
林君
关键词主成分分析   人工神¾网络   时间域航空电磁法   反演   电导率     
Abstract: Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler netw ork structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody’s methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.
Key wordsPrincipal component analysis   artificial neural network   airborne time-domain   electromagnetics   inversion   conductivity   
收稿日期: 2011-06-26;
基金资助:

国家自然科学基金(40974039) , 国家863项目 (2006AA06205),及中国科学院战略性先导科技专项(XDA08020500)联合资助

通讯作者: 林君 email: lin_jun@jlu.edu.cn   
引用本文:   
朱凯光,马铭遥,车宏伟等. 基于主成分的时间域航空电磁数据神经网络反演仿真研究[J]. 应用地球物理, 2012, 9(1): 1-8.
ZHU Kai-Guang,MA Ming-Yao,CHE Hong-Wei et al. PC-based artifi cial neural network inversion for airborne time-domain electromagnetic data*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 1-8.
 
[1] Ardjmandpour, N., Pain, C., Singer, J., Saunders, J., Aristodemou, E., and Carter, J., 2011, Artificial neural
[2] network forward modelling and inversion of electrokinetic logging data: Geophysical Prospecting, 59, 721 - 748.
[3] Asten, M., 2009, Use of principal component images for classification of the EM response of unexploded
[4] ordnance: 20th International Geophysical Conference and Exhibition, ASEG Extended Abstracts, 1 - 6, Australian
[5] Society of Exploration Geophysicists.
[6] Boadu, F., 2011, Artificial neural networks models for determining the basic geotechnical properties of soils from
[7] electrical measurements: Symposium on the Application of Geophysics to Engineering and Environmental Problems,
[8] , 79 - 79.
[9] Brodie, R., and Sambridge, M., 2009, An example of holistic inversion of time domain AEM data: 20th
[10] International Geophysical Conference and Exhibition, ASEG Extended Abstracts, 1 - 9.
[11] Brodie, R. C., 2010, Holistic inversion of airborne electromagnetic data: PhD Thesis, Australian National University.
[12] Brodie, R. C., 2011, One-step calibration, processing, and quantitative interpretation of airborne electromagnetic
[13] data via holistic inversion: International Workshop on Gravity, Electrical, and Magnetic Methods and Their
[14] Applications, Beijing, China.
[15] Chen, J., and Raiche, A., 1998, Inverting AEM data using a damped eigenparameter method: Exploration
[16] Geophysics, 29, 128 - 132.
[17] Christensen, N. B., Reid, J. E., and Halkjær, M., 2009, Fast laterally smooth inversion of airborne time-domain
[18] electromagnetic data: Near Surface Geophysics, 7(5), 599 - 612.
[19] Cox, L. H., Wilson, G. A., and Zhdanov, M. S., 2010, 3D inversion of airborne electromagnetic data using a moving
[20] footprint: Exploration Geophysics, 41, 250 - 259.
[21] Fullagar, P. K., and Reid, J. E., 2001, Emax conductivity-depth transformation of airborne TEM data: 15th Conference and Exhibition, ASEG Extended Abstracts, 1 - 1.
[22] Green, A., 1998, The use of multivariate statistical techniques for the analysis and display of AEM data:
[23] Exploration Geophysics, 29, 77 - 82.
[24] Haykin, S., 2004, Neural networks: A comprehensive foundation, 2nd edition: China Machine Press, Beijing.
[25] Huang, H. P., and Rudd, J., 2008, Conductivity-depth imaging of helicopter-borne TEM data based on a
[26] pseudolayer half-space model: Geophysics, 73, 115 - 120.
[27] Kass, M. A., and Li, Y., 2007, Use of principal component analysis in the de-noising and signal separation of transient
[28] electromagnetic data: The 3rd International Conference on Environmental and Engineering Geophysics (ICEEG),
[29] Wuhan, China.
[30] Kass, M. A., Li, Y., Krahenbuhl, R., Nabighian, M., and Oldenburg, D., 2010, Enhancement of TEM data and
[31] noise characterization by principal component analysis: Final Report, Strategic Environmental Research and
[32] Land/Modeling-and-Signal-Processing/MR - 1640
[33] Li, S., Yan, S., Li, C. S., Zhang, L. X., and Chen, M. S., 2001a, The application of artifi cial neural network expert
[34] system to the transient electromagnetic method inversion: Coal Geology & Exploration, 29, 48 - 51.
[35] Li, C. S., Zhang, Y. P., Li, S., and Zhang, L. X., 2001b,
[36] New inversion method of artificial neural network in transient electromagnetic inversion: Journal of Xi’an
[37] Jiaotong University, 35, 604 - 608.
[38] Liu, G., and Asten, M., 1993, Conductance-depth imaging of airborne TEM data: Exploration Geophysics, 24, 655 - 662.
[39] Macnae, J. C., Smith, R., Polzer, B. D., Lamontagne,Y., and Klinkert, P. S., 1991, Conductivity-depth imaging of
[40] airborne electromagnetic step-response data: Geophysics, 56, 102 - 114.
[41] Norton, J., Sheehan, J., and Beard, L., 2011, Application of an artificial neural network for airborne magnetic
[42] data discrimination: Symposium on the Application of Geophysics to Engineering and Environmental Problems,
[43] , 102 - 106.
[44] Sattel, D., 2005, Inverting airborne electromagnetic (AEM) data with Zohdy’s method: Geophysics, 70, 77 - 85.
[45] Vallée, M. A., and Smith, R. S., 2009, Inversion of airborne time-domain electromagnetic data to a 1D structure using
[46] lateral constraints: Near Surface Geophysics, 7, 63 - 71.
[47] Viezzoli, A., Auken, E., and Munday, T., 2009, Spatially constrained inversion for quasi 3D modelling of airborne
[48] electromagnetic data - an application for environmental assessment in the Lower Murray Region of South
[49] Australia: Exploration Geophysics, 40, 173 - 183.
[50] Wang, X. C, 2006, Study on inversion and interpretation of the transient electromagnetic method based on
[51] artifi cial neural network and its applications: PhD Thesis, Northwestern University, Xi’an.
[52] Wilson, G. A., Cox, L. H., and Zhdanov, M. S., 2010, Practical 3D inversion of entire airborne electromagnetic
[53] surveys: Preview, 146, 29 - 33.
[54] Yin, C., and Hodges, G., 2007, Simulated annealing for airborne EM inversion: Geophysics, 72, 189 - 195.
[55] Zhu, D. B, 1997, The application of BP neural network to TEM 1-D inversion: Journal of Guilin Institute of
[56] Technology, 17, 270 - 274.
[57] Zhu, K. G., Lin, J., Han, Y. H., and Li, N., 2010, Research on conductivity depth imaging of time domain helicopterborne
[58] electromagnetic data based on neural network: Chinese Journal of geophysics, 53, 743 - 750.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[6] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[7] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[8] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[9] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[10] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[11] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[12] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[13] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[14] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[15] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司