APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 9-18    DOI: 10.1007/s11770-012-0308-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
稀疏测线大地电磁资料三维反演研究:合成算例
林昌洪1,2,3,谭捍东1,2,3,舒晴4,佟拓1,2,3,张玉玫5
1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083;
2. 中国地质大学地下信息探测技术与仪器教育部重点实验室,北京 100083;
3. 中国地质大学(北京)地球物理与信息技术学院,北京 100083;
4. 中国国土资源航空物探遥感中心,北京 100083;
5. 华东冶金地质勘查局812地质队,铜陵 244008
Three-dimensional interpretation of sparse survey line MT data: Synthetic examples*
Lin Chang-Hong1,2,3, Tan Han-Dong1,2,3, Shu Qing4, Tong Tuo1,2,3, and Zhang Yu-Mei5
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing, 100083, China.
3. School of Geophysics and Information Technology,China University of Geosciences, Beijing, 100083, China.
4. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing, 100083, China.
5. No.812 Geological Party of East China Metallurgical Geology and Exploration Bureau, Tongling, 244008, China.
 全文: PDF (958 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 受勘探成本和工区环境等因素的影响,当前大多数大地电磁实际工作采取布置稀疏测线采集数据和使用二维反演方法解释这些稀疏测线数据的方式。然而,二维反演方法在解释三维地电构造数据时存在局限性,有时甚至做出错误的地质解释。本文尝试了使用三维反演方法对大地电磁稀疏测线数据进行反演解释。使用大地电磁全信息资料三维共轭梯度反演程序对理论模型合成稀疏测线数据进行了三维反演。结果表明:这种反演方案是可行与有效的。同时,我们发现在不同数据的三维反演结果中,四个张量阻抗元素和两个倾子数据同时反演的结果相对更为准确,更接近理论模型。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
林昌洪
谭捍东
舒晴
佟拓
张玉玫
关键词大地电磁   稀疏测线   三维反演   张量阻抗   倾子     
Abstract: Currently, most of MT (magnetotelluric) data are still collected on sparse survey lines and interpreted using 2D inversion methods because of the fi eld work cost, the work area environment, and so on. However, there are some 2D interpretation limitations of the MT data from 3D geoelectrical structures which always leads to wrong geological interpretations. In this paper, we used the 3D inversion method to interpret the MT sparse lines data. In model testing, the sparse lines data are the MT full information data generated from a test model and processed using the 3D conjugate gradients inversion code. The inversion results show that this inversion method is reasonable and effective. Meanwhile, we prove that for inversion results with different element parameters, the results by joint inversion of both the impedance tensor data and the tipper data are more accurate and closer to the test model.
Key wordsMT   sparse lines   3D inversion   impedance tensor   tipper   
收稿日期: 2010-11-19;
基金资助:

国家高技术研究发展计划(863计划)(2007AA09Z310),国家自然科学基金项目(40677037,40774029,41004028),及中央高校基本科研业务费专项资金资助项目(2010ZY53)和教育部新世纪优秀人才计划联合资助。

引用本文:   
林昌洪,谭捍东,舒晴等. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
LIN Chang-Hong,TAN Han-Dong,SHU Qing et al. Three-dimensional interpretation of sparse survey line MT data: Synthetic examples*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 9-18.
 
[1] Avdeev, D., and Avdeeva, A., 2009, 3D magnetotelluric inversion using a limited-memory quasi-Newton optimization:
[2] Geophysics, 74(3), 45 - 57.
[3] Becken, M., Ritter, O., and Burkhardt, H., 2008, Mode separation of magnetotelluric responses in threedimensional
[4] environments: Geophys. J. Int., 172, 67 - 86.
[5] Berdichevsky, M. N., Dmitriev, V. I., Golubtsova, N. S., Mershchikova, N. A., and Pushkarev, P. Yu., 2003,
[6] Magnetovariational sounding: new possibilities: Izvestiya: Physics of the Solid Earth, 39, 701 - 727.
[7] Chen, X. B., Zhao, G. Z., and Ma, X., 2006, Research on inversion of MT3D model approximately by 1D,
[8] inversion method: Chinese Journal of Engineering Geophysics (in Chinese), 3(1), 9 - 15.
[9] Hu, W. B., Su, Z. L., and Chen, Q. L., 199 7, The characteristics and application of tipper data: Oil
[10] Geophysical Prospecting, 32(2), 202 - 213.
[11] Hu, Z. Z., Hu, X. Y., and He Z. X., 2005, Using 2-D inversion for interpretation of 3-D MT data: Oil Geophysical
[12] Prospecting (in Chinese), 40(3), 353 - 359.
[13] Hu, Z. Z., Hu, X. Y., and He Z. X., 2006, Pseudo-threedimensional magnetotelluric inversion using nonlinear
[14] conjugate gradients: Chinese J. Geophys. (in Chinese), 49(4), 1226 - 1234.
[15] Ledo, J., 2005, 2-D versus 3-D magnetotelluric data interpretation: Surveys in Geophysics, 26, 511 - 543.
[16] Ledo, J., Queralt, P., Marti, A., and Jones, A. G., 2002, Two-dimensional interpretation of three-dimensional
[17] magnetotelluric data: an example of limitation and resolution: Geophys. J. Int., 150, 127 - 139.
[18] Lin, C. H., Tan, H. D., and Tong, T., 2008, Threedimens iona l conjuga t e gr adi ent inve r s ion of
[19] magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[20] Lin, C. H., Tan, H. D., and Tong, T., 2011a, The possibility of obtaining nearby 3D resistivity structure from
[21] magnetotelluric 2D profile data using 3D inversion: Chinese J. Geophys. (in Chinese), 54(1), 245 - 256.
[22] Lin, C. H., Tan, H. D., and Tong, T., 2011b, Three-dimensional conjugate gradient inversion of magnetotelluric impedance tensor data: Journal of Earth Science, 22(3), 386 - 395.
[23] Lin, C. H., Tan, H. D., and Tong, T., 2011c, Three-dimensional conjugate gradient inversion of magnetotelluric full
[24] information data: Applied Geophysics, 8(1), 1 - 10.
[25] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients:
[26] Geophys. J. Int., 115, 215 - 229.
[27] Newman, G. A., and Alumbaugh, D. L., 2000, Threedimensional magnetotelluric inversion using non-linear
[28] conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[29] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric
[30] inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1-3), 3 - 14.
[31] Siripunvaraporn, W., and Egbert, G., 2009, Vertical magnetic field transfer function inversion and parallel
[32] implementation: Physics of the Earth and Planetary Interiors, 173, 317 - 329.
[33] Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003a, Magnetotelluric three-dimensional modeling using
[34] the staggered-grid finite difference method: Chinese J. Geophys. (in Chinese), 46(5), 705 - 711.
[35] Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003b, Three-dimensional rapid relaxation inversion for the
[36] magnetotelluric method: Chinese J. Geophys. (in Chinese), 46(6), 850 - 855.
[37] Wanamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984, Magnetotelluric responses of three-dimensional bodies in
[38] layered earth: Geophysics, 49, 1517 - 1533.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[3] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[4] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[5] 曹萌,谭捍东,王堃鹏. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
[6] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[7] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[8] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[9] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[10] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[11] Shireesha M. and Harinarayana T.. 大地电磁测深数据处理—4元素和6元素阻抗张量元素的比较研究[J]. 应用地球物理, 2011, 8(4): 285-292.
[12] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
[13] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理, 2009, 6(1): 77-83.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司