APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 375-381    DOI: 10.1007/s11770-016-0550-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维数字岩心透射超声波模拟与速度精度分析
朱伟1,单蕊2
1. 油气资源与勘探技术教育部重点实验室(长江大学),地球物理与石油资源学院,武汉 430100
2. 中煤科工集团西安研究院有限公司,西安 710077
Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis
Zhu Wei1 and Shan Rui2
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education; Geophysics and Oil Resource Institute, Yangtze University, Wuhan 430100, China.
2. CCTEG Xi’an Research Institute, Xi’an 710077, China.
 全文: PDF (591 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于数字岩心的透射超声波模拟是数字岩石物理的重要组成部分,可用于研究波在孔隙岩石中的传播规律,计算岩石的等效速度等。在三维数字岩心中模拟超声波传播时,沿波传播方向在数字岩心两侧附加均匀的镶边层,设置震源和检波器。震源激发后检波器记录数字岩心的入射波和透射波,拾取两者波峰时间的差值,计算超声波在数字岩心中的传播速度(即数字岩心的速度)。为评估透射超声波模拟的精度,将一个数字岩心的孔隙分别饱和气、油和水,计算它们的速度。当震源频率较高时,速度随频率的降低而升高,这应当是波场散射的结果。当孔隙流体按气→油→水方向变化时,不同频率对应的速度具有相似的变化规律,并与线弹性静力学模拟输出的速度的变化规律相似,但数值有差异。考虑到线弹性静力学模拟已被广泛应用,若将其作为基准,则可认为透射超声波模拟具有较高的相对精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词数字岩心   透射超声波模拟   速度   相对精度     
Abstract: Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.
Key wordsdigital rock   transmitted ultrasonic wave simulation   velocity, relative precision   
收稿日期: 2015-07-01;
基金资助:

本研究由油气资源与勘探技术教育部重点实验室(长江大学)开放基金(编号:K2014-06)和长江大学油藏地球物理研究中心开放基金联合资助。

引用本文:   
. 三维数字岩心透射超声波模拟与速度精度分析[J]. 应用地球物理, 2016, 13(2): 375-381.
. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis[J]. APPLIED GEOPHYSICS, 2016, 13(2): 375-381.
 
[1] Liu, X. F., 2010, Numerical simulation of elastic and electrical properties of rock based on digital cores: PhD Thesis, China University of Petroleum (East China), Dongying.
[2] Andrä, H., Combaret, N., Dvorkin, J., et al., 2013, Digital Rock Physics Benchmarks-Part II: Computing effective properties: Computers & Geosciences, 50(SI), 33−43.
[3] Liu, X., Sun, J., and Wang, H., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1−7.
[4] Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., et al., 2002, Computation of linear elastic properties from micro-tomographic images: Methodology and agreement between theory and experiment: Geophysics, 67(5), 1396−1405.
[5] Knackstedt, M. A., Arns, C. H., Pinczewski, W. V., et al., 2003, Velocity-porosity relationships,1:accurate velocity model for clean consolidated sandstones: Geophysics, 68(3), 1822−1831.
[6] Liu, X. F., 2010, Numerical simulation of elastic and electrical properties of rock based on digital cores: PhD Thesis, China University of Petroleum (East China), Dongying.
[7] Madonna, C., Almqvist, B. S. G., and Saenger, E. H., 2012, Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging: Geophysical Journal International, 189(3), 1475−1482.
[8] Liu, X., Sun, J., and Wang, H., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1−7.
[9] Mavko, G., Mukerji. T., and Dvorkin, J., 2009, The Rock Physics Handbook-Tools for Seismic Analysis in Porous Media: Cambridge University Press, New York, 150−155.
[10] Madonna, C., Almqvist, B. S. G., and Saenger, E. H., 2012, Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging: Geophysical Journal International, 189(3), 1475−1482.
[11] Saenger, E. H., 2004, Numerical considerations of fluid effects on wave propagation: Influence of the tortuosity: Geophysical Research Letters, 31, L21613.
[12] Mavko, G., Mukerji. T., and Dvorkin, J., 2009, The Rock Physics Handbook-Tools for Seismic Analysis in Porous Media: Cambridge University Press, New York, 150−155.
[13] Saenger, E. H., 2008, Numerical methods to determine effective elastic properties: International Journal of Engineering Science, 46(6), 598−605.
[14] Saenger, E. H., 2004, Numerical considerations of fluid effects on wave propagation: Influence of the tortuosity: Geophysical Research Letters, 31, L21613.
[15] Saenger, E. H., Ciz, R., Krüger, O. S., et al., 2007, Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress: Geophysics, 72(5), SM293−SM300.
[16] Saenger, E. H., 2008, Numerical methods to determine effective elastic properties: International Journal of Engineering Science, 46(6), 598−605.
[17] Saenger, E. H., Enzmann, F., Keehm, Y., et al., 2011, Digital rock physics: Effect of fluid viscosity on effective elastic properties: Journal of Applied Geophysics, 74(4), 236-241.
[18] Saenger, E. H., Ciz, R., Krüger, O. S., et al., 2007, Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress: Geophysics, 72(5), SM293−SM300.
[19] Saenger, E. H., Gold, N., and Shapiro, S. A., 2000, Modeling the propagation of elastic waves using a modified finite difference grid: Wave Motion, 31(1), 77−92.
[20] Saenger, E. H., Enzmann, F., Keehm, Y., et al., 2011, Digital rock physics: Effect of fluid viscosity on effective elastic properties: Journal of Applied Geophysics, 74(4), 236-241.
[21] Saenger, E. H., Shapiro, S. A., and Keehm, Y., 2005, Seismic effects of viscous Biot-coupling: Finite difference simulations on micro-scale: Geophysical Research Letters, 32, L14310.
[22] Sun, J. M., Yan, G. L., Jiang, L. M., et al., 2014, Research of influence laws of fluid properties on elastic parameters of fractured low permeability reservoir rocks based on digital core: Journal of China University of Petroleum (In Chinese), 38(3), 39-44.
[23] Wang, S., Liu, X. J., Chen, Q., et al., 2015, Carbonate reservoir porosity ultrasonic evaluation by numerical simulation:Progress in Geophysics (In Chinese), 30(1), 267−273.
[24] Zhang, Y., Song, L. M., Deffenbaugh, M., and Toksöz, M. N., 2010, A finite difference method for a coupled model of wave propagation in poroelastic materials: Journal of the Acoustical Society of America, 127(5), 2847−2855.
[25] Zhao, J. P., Sun, J. M., Jiang, L. M., et al., 2014, Effects of cementation on elastic property and permeability of reservoir rocks: Earth Science-Journal of China University of Geosciences (In Chinese), 39(6), 769-774.
[26] Zhu, W., and Shan, R., 2014, Progress of digital rock physics: Oil Geophysical Prospecting (In Chinese), 49(6), 1138−1146.
[27] Saenger, E. H., Gold, N., and Shapiro, S. A., 2000, Modeling the propagation of elastic waves using a modified finite difference grid: Wave Motion, 31(1), 77−92.
[28] Saenger, E. H., Shapiro, S. A., and Keehm, Y., 2005, Seismic effects of viscous Biot-coupling: Finite difference simulations on micro-scale: Geophysical Research Letters, 32, L14310.
[29] Sun, J. M., Yan, G. L., Jiang, L. M., et al., 2014, Research of influence laws of fluid properties on elastic parameters of fractured low permeability reservoir rocks based on digital core: Journal of China University of Petroleum (In Chinese), 38(3), 39-44.
[30] Wang, S., Liu, X. J., Chen, Q., et al., 2015, Carbonate reservoir porosity ultrasonic evaluation by numerical simulation:Progress in Geophysics (In Chinese), 30(1), 267−273.
[31] Zhang, Y., Song, L. M., Deffenbaugh, M., and Toksöz, M. N., 2010, A finite difference method for a coupled model of wave propagation in poroelastic materials: Journal of the Acoustical Society of America, 127(5), 2847−2855.
[32] Zhao, J. P., Sun, J. M., Jiang, L. M., et al., 2014, Effects of cementation on elastic property and permeability of reservoir rocks: Earth Science-Journal of China University of Geosciences (In Chinese), 39(6), 769-774.
[33] Zhu, W., and Shan, R., 2014, Progress of digital rock physics: Oil Geophysical Prospecting (In Chinese), 49(6), 1138−1146.
[1] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[2] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[3] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[4] 李琳,马劲风,王浩璠,谭明友,崔世凌,张云银,曲志鹏. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
[5] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[6] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[7] 郭同翠,王红军,穆龙新,张兴阳,马智,田雨,李昊宸. 盐膏岩组分与岩石速度关系模版研究——以阿姆河盆地盐膏岩为例[J]. 应用地球物理, 2016, 13(3): 459-468.
[8] 张军华,李军,肖文,谭明友,张云银,崔世凌,曲志鹏. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
[9] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[10] 陈海峰, 李向阳, 钱忠平, 宋建军, 赵桂玲. 基于两参数简化方程的叠前偏移速度分析[J]. 应用地球物理, 2016, 13(1): 135-144.
[11] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[12] 凌云, 韩立国, 张益明. 地震波在孔隙介质中低频衰减现象的粘弹性特征分析及近似[J]. 应用地球物理, 2014, 11(4): 355-363.
[13] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[14] 韩建光, 王赟, 韩宁, 邢占涛, 芦俊. 多波高斯束叠前深度偏移速度分析[J]. 应用地球物理, 2014, 11(2): 186-196.
[15] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司