APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 279-287    DOI: 10.1007/s11770-016-0560-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
海洋直流电阻率法各向异性正演模拟研究
殷长春,张平,蔡晶
吉林大学地球探测科学与技术学院,吉林长春 130026
Forward modeling of marine DC resistivity method for a layered anisotropic earth
Yin Chang-Chun1, Zhang Ping1, and Cai Jing1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (872 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 受沉积环境影响,海底地层层理发育,各向异性介质更接近于真实海洋地质条件。对海洋各向异性研究可更好认识海底构造特征,有效地进行海底资源勘查。本文从各向异性麦克斯韦电磁方程出发,根据电磁场的无源特征引入标量位函数;利用电场和磁场的连续性分别向海底深部和海水中延拓,并将延拓后的电磁位函数在海底耦合到发射源上,从而实现海底电场和磁场的递推求解。我们首先探索如何利用海洋电阻率法识别和求解海底电各向异性特征。研究发现海底各向异性可从视电阻率测深曲线和海底视电阻率极性图进行求解。进而,我们通过海底各向异性地层中高阻体(油气藏)模型进行正演模拟,发现海洋电法视电阻率在浅水区对地下高阻薄层有明显的异常反应。相比海洋可控源电磁法,海洋直流电法不受空气波影响,在浅海区油气资源勘查有着较好的优势,而前人大多基于各向同性模型进行研究,本文实现一维海洋直流电阻率法各向异性正演模拟,算法计算精度高,能很好的为二维、三维正演模拟提供理论参考。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词各向异性   海洋电阻率法   正演模拟   电磁场延拓算法     
Abstract: Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell’s equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallow-water areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling. 
Key wordsElectrical anisotropy   Marine DC resistivity method   Forward modeling   Field continuation algorithm   
收稿日期: 2016-03-13;
基金资助:

本研究由国家863重大项目课题“深水可控源电磁勘探系统”(编号:2012AA09A20103)资助。

引用本文:   
. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
. Forward modeling of marine DC resistivity method for a layered anisotropic earth[J]. APPLIED GEOPHYSICS, 2016, 13(2): 279-287.
 
[1] Allen, D., and Merrick, N., 2007, Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies: Exploration Geophysics, 38(1), 50−59.
[2] Bronstein, I. N., and Semendjajew, K. A., 1979, Taschenbuch der Mathematik: B.G. Teubner Verlags Gesellschaft, Leipzig.
[3] Cai, H. Z., Xiong, B., Han, M., and Zhdanov, M., 2014, 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method: Computers & Geosciences, 73, 164−176.
[4] Fedynskiy, B. B., 1960, The Soviet Union’s marine geophysical exploration: Geophysical Exploration, 1960 (2), 10−15.
[5] Goto, T. N., Kasaya, T., Macgiyama, H., et al., 2008, A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea: Exploration Geophysics, 39, 52−59.
[6] Goto, T. N., Takekawa, J., Mikada, H., et al., 2013, Resistivity survey of seafloor massive sulfide areas in the Iheya north area, off Okinawa, Japan: Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, 298−301.
[7] Inoue, M., 2005, Development and case studies of the new submarine electric sounding system: Geophysical Exploration, 58, 241−250.
[8] Jia, D. Y., Weng, A. H., Liu, Y. H., and Yin, C., 2013, Propagation of electromagnetic fields from a horizontal electrical dipole buried in ocean: Progress in Geophysics (in Chinese), 28(1), 507−514.
[9] Kong, F. N., Johnstad, S. E., Rosten, T., and Westerdahl1, H., 2008, A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media: Geophysics, 73(1), F9−F19.
[10] Kwon, H. S., Kim, J. H., Ahn, H. Y., and Yoon, J. S., 2005, Delineation of a fault zone beneath a river bed by a DC resistivity survey using a floating streamer cable: Exploration Geophysics, 36, 50−58.
[11] Li, J. M., 2005, Electric fields and electrical prospecting: Geological Publishing House, Beijing, 79−83.
[12] Lile, O. B., Backe, K. R., Elvebakk, H., et al., 1994, Resistivity measurements on the sea bottom to map fracture zones in the bedrock underneath sediments: Geophysical Prospecting, 42, 813-824.
[13] Li, X. B., and Pedersen, L. B., 1991, The electromagnetic response of an azimuthally anisotropic half-space: Geophysics, 56(9), 1462−1473.
[14] Matias, M. J. S., and Habberjam, G. M., 1986, The effect of structure and anisotropy on resistivity measurements: Geophysics, 51(4), 964−971.
[15] Newman, G. A., Commer, M., and Carazzone, J. J., 2010, Imaging CSEM date in the presence of electrical anisotropy: Geophysics, 75(2), F51−F61.
[16] Shen, J. S., Guo, N. C., and Su, B. Y., 2009, Response characteristics of resistivity of anisotropic laminar formation in direct current electric sounding: Journal of China University of Petroleum, 33(3), 59−65.
[17] Tarits, P., Hussher, A., D’Eu, J. F., Balem, K., Hautot, S., and Girault, R., 2012, Free gas mapping with a new marine DC resistivity technique: SEG Technical Program Expanded Abstracts, 1−5.
[18] Um, E. S., Harris, J. M., and Alumbaugh, D. L., 2010, 3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach: geophysics, 75(4), F115 −F126.
[19] Von Herzen, R. P., Kirklin, J., and Becker, K., 1996, Geo-electrical measurements at the TAG hydrothermal mound: Geophysical Research letters, 23, 3451−3454.
[20] Wang, W., Wu, X. P., and Spitzer K., 2011, 3D DC anisotropic resistivity modeling using unstructured finite element method: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Beijing, China, October 10-13, 46 − 46.
[21] Weidelt, P., 1999, 3-D conductivity models: Implications of electrical anisotropy: In: Oristaglio, M. and Spies, B., Eds. Three dimensional electromagnetics. Soc. Exploration Geophysics, 14−21.
[22] Weng, A. H., and Zhu, S. A., 2010, Near sea-bottom DC sounding response for gas hydrate: Oil Geophysical Prospecting (in Chinese), 45(3), 458−461.
[23] Xu, T., and Dunbar, J. A., 2015, Binning Method for Mapping Irregularly Distributed Continuous Resistivity Profiling Data onto a Regular Grid for 3-D Inversion: Journal of Environmental and Engineering Geophysics, 20(1), 1−17.
[24] Yin, C. C., 2000, Geoelectrical inversion for a one-dimensional anisotropic model and inherent non-uniqueness: Geophysical Journal International, 140, 11−23.
[25] Yin, C. C., 2006, MMT forward modeling for a layered earth with arbitrary anisotropy: Geophysics, 71(3), G115−G128.
[26] Yin, C. C., Ben, F., Liu, Y. H., and Cai, J., 2014, MCSEM 3D modeling for arbitrarily anisotropic media: Chinese J. Geophys. (in Chinese), 57(12), 4110−4122.
[27] Yin, C. C., and Hodges, G., 2003, Identification of Electrical Anisotropy from Helicopter EM Data: Symposium on the Application of Geophysics to Engineering and Environmental Problems, Environmental and Engineering Geophysical Society (EEGS), 419−431.
[28] Yin, C. C., and Maurer, H. M., 2001, Electromagnetic induction in a layered earth with arbitrary anisotropy: Geophysics, 66(5), 1405−1416.
[29] Yin, C. C., and Weidelt, P., 1999, Geoelectrical fields in a layered earth with arbitrary anisotropy: Geophysics, 64, 426−434.
[30] Zhou, J. M., Li, X., Qi, Z. P., Sun, N. Q., and Wang, H. N., 2015, Simulation of 3D marine CSEM response in anisotropic media by coupled potential finite volume method: Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7−10, 343−346.
[1] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[2] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[3] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[5] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[6] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[7] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[8] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[9] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[10] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[11] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[12] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[13] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[14] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[15] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司