APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 238-248    DOI: 10.1007/s11770-016-0565-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
起伏地形条件下长方体磁场无解析奇点表达式
匡星涛,杨海,朱晓颖,李伟
中国国土资源航空物探遥感中心,北京 100083
Singularity-free expression of magnetic field of cuboid under undulating terrain
Kuang Xing-Tao1, Yang Hai1, Zhu Xiao-Ying1, and Li Wei1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China.
 全文: PDF (746 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 已有的均匀磁化长方体磁场计算方法大都假设观测点位于上半无源空间,对于起伏地形条件而言,这些方法可能存在解析“奇点”。为此,本文基于地磁场基本理论,采用变量替换的积分方法,导出了改进的磁场表达式,详细讨论并有效解决了整个无源空间的所有奇点问题。相比前人的方法,其积分过程更自然、简单,最后的积分结果形式更加统一,并且不需要坐标变换即可求出无源区任意点处的磁场值,从而简化了正演过程。对比模型试验表明,新导出的磁场无解析“奇点”理论表达式是正确的,并能适应地形起伏的情况。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
匡星涛
杨海
朱晓颖
李伟
关键词起伏地形   长方体磁场   变量代换   解析奇点     
Abstract: Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. ?T at all points in the source-free space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.
Key wordsUndulating terrain   magnetic field of cuboid   variable substitution   analytical singularity   
收稿日期: 2015-10-15;
基金资助:

本研究由中国地质调查局项目塔里木东北部地区航空重磁综合调查(编号:12120115039401)资助。

引用本文:   
匡星涛,杨海,朱晓颖等. 起伏地形条件下长方体磁场无解析奇点表达式[J]. 应用地球物理, 2016, 13(2): 238-248.
KUANG Xing-Tao,YANG Hai,ZHU Xiao-Ying et al. Singularity-free expression of magnetic field of cuboid under undulating terrain[J]. APPLIED GEOPHYSICS, 2016, 13(2): 238-248.
 
[1] Bhattacharyya, B. K., 1964, Magnetic anomalies due to prism-shaped bodies with arbitrary polarization: Geophysics, 24(4), 517−531.
[2] Bijendra, S., and Guptasarma, D., 2001, New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedral: Geophysics, 66(2), 521−526.
[3] Fregoso, E., and Gallardo, L., 2009, Cross-gradients joint 3D inversion with applications to gravity and magnetic data: Geophysics, 74(4), 31−42.
[4] Goodacre, A. K., 1973, Some comments on the calculation of the gravitational and magnetic attraction of a homogeneous rectangular prism: Geophysical Prospecting, 21, 66−69
[5] Guo, Z. H., Guan, Z. N., and Xiong, S. Q., 2004, Cuboid ?T and its gradient forward theoretical expressions without analytic odd points: Chinese J. Geophys. (in Chinese), 47(6), 1131−1138.
[6] Kunaratnam, K., 1981, Simplified expressions for the magnetic anomalies due to vertical rectangular prisms: Geophysical Prospecting, 29, 883−890.
[7] Li, Y. G., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61(2), 394−408.
[8] Luo, Y., Wu, M. P., Wang, P., Duan, S. L., Liu, H. J., Wang, J. L., and An, Z. F., 2015, Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application: Applied Geophysics, 12(3), 283−291.
[9] Pejman, S., Michel, C., and Denis, M., 2011, 3D stochastic inversion of magnetic data: Journal of Applied Geophysics, 73(4), 336−347.
[10] Pilkington, M., 1999, 3-D magnetic imaging using conjugate gradient: Geophysics, 15(1), 1132−1142.
[11] Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic inversion with data compressionand image focusing: Geophysics, 67(5), 1532−1541.
[12] Rao, D. B., and Babu, N. R., 1991, A rapid methods for three dimensional modeling of magnetic anomalies: Geophysics, 56, 1729−1737.
[1] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[2] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司