APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 598-604    DOI: 10.1007/s11770-015-0526-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于剩余动校正拉伸补偿的改进子波估计方法研究
Mohammad Mahdi Abedi1,Siyavash Torabi2
1. Department of Petroleum Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
2. Dana Energy Group Co., Tehran, Iran
Improving homomorphic wavelet estimation by compensating for residual NMO stretching on stack section
Mohammad Mahdi Abedi1 and Siyavash Torabi2
1. Department of Petroleum Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
2. Dana Energy Group Co., Tehran, Iran
 全文: PDF (307 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 子波估计是地震数据处理与反演中的常规步骤。同态子波估计基于地震叠加剖面进行,不需要相位的先验信息,已被长期采用。尽管会引起波形拉伸,但共中心点道集必须经过动校正(NMO)才能形成叠加剖面。即使切除拉伸较为严重的部分,剩余的动校正拉伸仍可能对叠加剖面产生影响。而较大的剩余动校正拉伸会不同程度地影响数据随时间变化的谱特性。考虑到同态子波估计是基于数据的谱特性进行的,因而对剩余动校正拉伸进行补偿,可以提高该过程的精度。本文提出了一种快速计算剩余动校正拉伸量并进行补偿的方法。本方法仅需要诸如偏移距和速度函数的有限信息,也不需要叠前处理。合成及实际数据的处理均表明该方法提高了子波估计的准确程度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Mohammad Mahdi Abedi
Siyavash Torabi
关键词同态分析   拉伸   正常时差   子波   叠加   反演     
Abstract: Wavelet estimation is a common step in seismic data processing and inversion. Homomorphic wavelet estimation has long utilized as a method that uses a seismic stack section with no phase presumption. Forming a stack section, normal move-out (NMO) correction must be applied on common midpoint (CMP) gathers, although it introduces NMO stretching. After stacking, residual of the NMO stretching may affect the stack section even after muting the highly stretched zone of the NMO corrected CMP gather. Presence of significant residual NMO stretching changes the spectral characteristics of data in time direction, by different degrees. Considering that in homomorphic process the wavelet is estimated based on the spectral characteristics of data, compensating for the residual NMO stretching, can improve the accuracy of the process. Here, we introduce a fast method of calculating the amount of residual NMO stretching and compensating for its effect on wavelet estimation. The proposed method needs limited prestack information like offsets and velocity function and include no prestack processing. We apply the proposed method on synthetic and real datasets and demonstrate the improvement of the estimated wavelet.
Key wordsHomomorphic analysis   stretching   normal move-out   wavelet   stacking   inversion   
收稿日期: 2015-01-12;
引用本文:   
Mohammad Mahdi Abedi,Siyavash Torabi. 基于剩余动校正拉伸补偿的改进子波估计方法研究[J]. 应用地球物理, 2015, 12(4): 598-604.
Mohammad Mahdi Abedi,Siyavash Torabi. Improving homomorphic wavelet estimation by compensating for residual NMO stretching on stack section[J]. APPLIED GEOPHYSICS, 2015, 12(4): 598-604.
 
[1] Dunkin, J. W., and Levin, F. K., 1973, Effect of normal moveout on a seismic pulse: Geophysics, 38, 635−642.
[2] Herrera, R. H., and van der Baan, M., 2012, Short-time homomorphic wavelet estimation: Journal of Geophysics and Engineering, 9, 674−680.
[3] Luo, C. M., Wang, S. X., and Yuan, S. Y., 2014, Effect of inaccurate wavelet phase on prestack waveform inversion: Applied Geophysics, 11(4), 479−488.
[4] Otis, R. M., and Smith, R. B., 1977, Homomorphic deconvolution by log spectral averaging: Geophysics, 42, 1146−57.
[5] Perroud, H., Tygel, M., 2004, Nonstretch NMO: Geophysics, 69, 599−607.
[6] Rupert, G. B., and Chun, J. H., 1975, The block move sum normal moveout correction: Geophysics, 40, 17−24.
[7] Tribolet, J. M., and Oppenheim, A. V., 1977, Deconvolution of seismic data using homomorphic filtering: Massachusetts Institute of Technology: Cambridge, Research Lab of Electronics.
[8] Ulrych, T., 1971, Application of homomorphic deconvolution to seismology: Geophysics, 36, 650-60.
[9] Vermeer, G. J. O., 2013, NMO stretch in survey design and processing: 83th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 171−175.
[10] Yilmaz, O., 2001, Seismic data analysis-volume I: Society of Exploration Geophysicists, USA, 887−888.
[11] Yuan, S. Y., and Wang, S. X., 2011, Influence of inaccurate wavelet phase estimation on seismic inversion: Applied Geophysics, 8(1), 48−59.
[12] Zhang, B., Zhang, K., Guo, Sh., and Marfurt, K. J., 2013, Nonstretching NMO correction of prestack time-migrated gathers using a matching-pursuit algorithm: Geophysics, 78, U9−U18
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 李皓,李国发,郭祥辉,孙夕平 ,王建富. 基于非稳态反演的气枪阵列子波方向性反褶积?[J]. 应用地球物理, 2019, 16(1): 124-132.
[6] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[7] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[8] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[9] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[10] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[11] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[12] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[13] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[14] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[15] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司