APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 516-522    DOI: 10.1007/s11770-015-0524-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测
宋丽蓉1,2,于常青2,李桂花1,冯杨洋2,3,何俊杰4
1. 山东科技大学(青岛)地球科学与工程学院,青岛 266510
2. 中国地质科学院地质研究所,北京 100037
3. 昆明理工大学 国土资源工程学院,昆明 650093
4. 中国石油集团东方地球物理公司吐哈物探处,哈密 839009
Characteristics of gravity anomalies and prediction of volcanosedimentary boron deposit distribution in the Xiongba area, Tibet
Song Li-Rong1,2, Yu Chang-Qing2, Li Gui-Hua1, Feng Yang-Yang2,3, and He Jun-Jie4
1. School of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.
3. School of National Land Resource and Engineering, Kunming University of Technology, Kunming 650093, China.
4. Tuha Division of Geophysical Exploration, BGP, China National Petroleum Corporation, Hami 839009, China.
 全文: PDF (864 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 火山沉积型硼矿是一种重要的硼矿床成因类型,主要发育在第三纪湖相蒸发岩沉积层和火山岩互层的二元结构单元中。针对硼矿具有低密度的特点,本文对西藏雄巴地区进行了1:5万高精度重力勘探,获得了研究区布格重力异常和剩余重力异常。根据其异常特征进一步分析了区域构造特征、断裂体系、沉积单元以及火成岩的分布与火山沉积型硼矿的形成关系;通过对所获得重力资料的处理,清楚地揭示了局部异常的变化和研究区的断裂构造特征;通过对重力异常进行优选延拓和小波变换处理,并结合研究区的其它地质资料的综合分析,对火山沉积型硼矿的分布范围进行了预测,为该地区火山沉积型硼矿的钻探工程部署提供了地球物理依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋丽蓉
于常青
李桂花
冯杨洋
何俊杰
关键词火山沉积型硼矿   高精度重力勘探   优选延拓   小波变换     
Abstract: Volcanosedimentary boron deposits are present within Tertiary lacustrine sediments and volcanic rocks in Xiongba, Tibet. Boron deposits are characterized by low density relative to country rocks; thus, it is possible to locate them by gravity measurements. We conducted a 1:50000 high-precision gravity survey in the Xiongba area, Tibet, and obtained the Bouguer and residual gravity anomalies. We analyzed fault systems and the distribution of sedimentary and volcanic rocks and their relation to the volcanosedimentary boron deposits. The processing of the gravity data revealed local gravity variations and fault structures. We applied preferential downward continuation and wavelet transform to the gravity data, and in conjunction with geological data, we predicted the distribution of volcanosedimentary boron deposits.
Key wordsVolcanosedimentary boron deposits   gravity survey   preferential continuation   wavelet transform   
收稿日期: 2015-08-31;
基金资助:

本研究由国家973项目(编号:2011CB403005)和西藏旺盛投资有限公司联合资助。

引用本文:   
宋丽蓉,于常青,李桂花等. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
Song Li-Rong,Yu Chang-Qing,Li Gui-Hua et al. Characteristics of gravity anomalies and prediction of volcanosedimentary boron deposit distribution in the Xiongba area, Tibet[J]. APPLIED GEOPHYSICS, 2015, 12(4): 516-522.
 
[1] Cao, K. C., and He, M. Q., 1999, A summary of conditions for formation of volcanic-sedementary boron deposits in Turkey: Geology of Chemical minerals, 21(2), 96-111.
[2] Deng, Y. F., Zhong, Z. J., and Walter Mooney, 2014, Mantle origin of the Emeishan large igneous province (South China) from the analysis of residual gravity anomalies: LITHOS.
[3] Guo, L. H., Meng, X. H., and Chen, Z. H., 2013, Preferential filtering for gravity anomaly separation: Computers and Geosciences, 51.
[4] Hou, Z. Z., and Yang, W. C., 1997, Wavelet transform and multi-scale analysis on graity anomalies of China: Chinese Journal of Geophysics, 40(1), 85-95.
[5] Hou, Z. Z., and Yang, W. C., 2011, Inversion and density structure of multi scale gravity field in Tarim Basin: Scientia Sinica Terrae (Series D), 44(1), 29-39.
[6] Hou, Z. Z., and Yang, W. C., 2012, Application of wavelet multi-scale analysis: Science Press, Beijing.
[7] Li, S. L., Meng, X. H., and Guo L. H., 2010, Gravity and magnetic anomalies field characteristics in the South China Sea and its application for interpretation of igneous rocks: Applied Geophysics, 7(4), 295-305.
[8] Lu, Y. F., Chen, Y. C., and Li, H. Q., 2010, Metallogenic Chronology of Boron Deposits in the Eastern Liaoning Paleoproterozoic Rift Zone: Acta Geologica Sinica, English Edition, 79(3).
[9] Meng, X. H., and Guo, L. H., 2009, A method for gravity anomaly separation based on preferential continuation and its application: Applied geophysics, 6(3), 217-225.
[10] Ozor, A. A, 1987, Sediments and volcanosedimentary boron deposits: Geological Publishing House, Beijing.
[11] Shan, F. L., Chen,W. X., and Wang, C. S., 2015, Study on the relationship between volcanic sedimentary boron and volcanic rocks in the Tertiary period: Science and Technology Information.
[12] Shao, S. N., and Xiong, X. X., 2010, Discussion on China boron-concentrating area and the resource potential: Geology of Chemical Minerals, 32(2), 272-278.
[13] Sun, Y. Y., and Yang, W. C., 2014, Recognizing and extracting the information of crustal deformation belts from the gravity field: Chinese Journal of Geophysics, 57(5), 1578-1587.
[14] Wang, C. S., Chen,W. X., and Zhang, X., 2015, Study on the metallogenic conditions and prospecting basis of volcanic sedimentary deposit: Science and Technology Information.
[15] Wang, C. Z., Xiao, R. G., and Liu, J. D., 2008, Ore-forming genesis and model of eastern Liaoning borate deposits: Earth Science-Journal of China University of Geosciences, 33(6).
[16] Wang, P. J., 1996, Binary association of borate-bearing sequences in borate deposits:Geology of Chemical Minerals, 18(3), 202-206.
[17] Wang, W., Wang, G., and Zhao, Y. Y., 2013, The characteristic and utilization of boron resource in Tibet salt lake: Journal of Salt and Chemical Industry, 42(8), 10-12.
[18] Wang, Y. G., 2010, Research and application of high precision gravity normalized total gradient method, Jilin University.
[19] Xu, D. S., and Zeng, H. L., 2000, Preferential continuation and its application to Bouguer gravity anomaly in China, Geoscience, 14(2).
[20] Yang, W. C., Guo, A. Y., and Xie Y. Q., 1987, Interpretation method for gravity and magnetic anomalies in frequency domain: Computing Techniques for Geophysical and Geochemical Exploration.
[21] Yang, W. C., Shi, Z. Q., and Hou, Z. Z., 2001, Discrete wavelet transtorm for multiple decomposition of gravity anomalies: Chinese Journal of Geophysics, 44(4), 534-541.
[22] Yang, W. C., Sun, Y. Y., and Yu, C.Q., 2015, An multi-scale scratch analysis method for quantitative interpretation of regional gravity fields: Chinese Journal of Geophysics, 58(2), 520-531.
[23] Yuan, D. F., and Zhou, Z. D., 2001, Characteristiac boron anomaly of volcanogene sedimentary type in Shouchang basin in Zhejiang: Geology of Chemical Minerals, 23(4), 230-238.
[24] Zeng, H. L., 2005, Gravity field and gravity prospecting: Geological Publishing House, Beijing.
[25] Zeng, H. L., Zhang, Q. H., and Li, Y. S., 1997, Crustal structure inferred from gravity anomalies in South China: Tectonophysics, 283(1), 189-203.
[26] Zhao, X., and Wang, Q. L., 1998, Mineralizing conditions for the volcanic- sedimentary boron deposits across the Fujian-Zhejiang region: Geology of Chemical minerals, 20(4), 272-278.
[1] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[2] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[3] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[4] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[5] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[6] 龙云, 韩立国, 韩利, 谭尘青. 小波域L1范数最优解匹配处理[J]. 应用地球物理, 2012, 9(4): 451-458.
[7] 张晓峰, 潘保芝, 王飞, 韩雪. 小波变换在裂缝识别和裂缝密度评价中的研究[J]. 应用地球物理, 2011, 8(2): 164-169.
[8] 李淑玲, 孟小红, 郭良辉, 姚长利, 陈召曦, 李和群. 南海重磁异常特征及火成岩分布[J]. 应用地球物理, 2010, 7(4): 295-305.
[9] 王珺, 陈雨红, 许大华, 乔玉雷. 基于可靠地估计反射方位和边界的构造约束保边滤波[J]. 应用地球物理, 2009, 6(4): 337-346.
[10] 孟小红, 郭良辉, 陈召曦, 李淑玲, 石磊. 基于优选向上延拓算子的重力异常分离方法[J]. 应用地球物理, 2009, 6(3): 217-225.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司