APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 263-272    DOI: 10.1007/s11770-015-0490-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
数据挖掘与测井解释:应用于砾岩储层
石宁1,2,李洪奇1,2,罗伟平1,2
1. 中国石油大学(北京),地球物理与信息工程学院,北京 102249
2. 石油数据挖掘北京市重点实验室,北京 102249
Data mining and well logging interpretation: application to a conglomerate reservoir
Shi Ning1,2, Li Hong-Qi1,2, and Luo Wei-Ping1,2
1. Geophysics and Information Engineering College, China University of Petroleum, Beijing 102249, China.
2.Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum, Beijing 102249, China.
 全文: PDF (985 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 数据挖掘是从大量的、不完全的、有噪声的、模糊的数据中提取隐含的、但又是潜在有用的信息和知识的过程,由于数据挖掘具有出色的非线性建模能力和自组织学习能力,因此可以在复杂储层的测井解释中发挥作用。本文用数据挖掘方法识别复杂储层的岩性。将岩性识别作为一种分类任务建立数据挖掘流程,包括特征提取、特征选择和建立模型等步骤。本文用独立成分分析法从测井曲线中提取信息;然后使用分支定界算法寻找最佳的特征子集,并消除冗余信息;最后采用C5.0决策树算法建立分类模型的测井曲线。模型和实际测井数据吻合较好,表明在复杂油藏的研究中数据挖掘方法是有效的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
石宁
李洪奇
罗伟平
关键词数据挖掘   测井解释   独立成分分析   分支定界算法   C5.0决策树     
Abstract: Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and-bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.
Key wordsData mining   well logging interpretation   independent component analysis   branch-and-bound algorithm   C5.0 decision tree   
收稿日期: 2014-03-01;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05023-005-006)资助。

引用本文:   
石宁,李洪奇,罗伟平. 数据挖掘与测井解释:应用于砾岩储层[J]. 应用地球物理, 2015, 12(2): 263-272.
Shi Ning,Li Hong-Qi,Luo Wei-Ping. Data mining and well logging interpretation: application to a conglomerate reservoir[J]. APPLIED GEOPHYSICS, 2015, 12(2): 263-272.
 
[1] Acar, M. A.,Tolun, M. R., and Elbasi, E., 2014, An application of data mining and knowledge discovery process in the field of natural gas exploration: Proceedings on Application of Information and Communication Technologies (AICT), 8th IEEE International Conference, 1−6.
[2] Al-Bazzaz, W. H., and Al-Mehanna, Y. W., Gupta, A., et al. 2007, Permeability modeling using neural-network approach for complex Mauddud-Burgan carbonate reservoir: SPE Middle East Oil and Gas Show and Conference, 11−14.
[3] Aminzadeh, F., 2005, Applications of AI and soft computing for challenging problems in the oil industry: Journal of Petroleum Science and Engineering, 47(1−2), 5−14.
[4] Bian, Z. Q., and Zhang, X. G., 2002, Pattern Recognition:Tsinghua University Press, China, 176−210.
[5] Fayyad,U.,and Piatetsky-Shapiro, G., et al. 1996, From data mining to knowledge discovery in databases: AI Magazine, 17(3), 37−53.
[6] Guo, H. F., Li, H. Q., and Meng, Z. X., 2008, Feature Selection, Genetic Algorithm and Support Vector Machine: Journal of Oil and Gas Technology, 30(6), 94−99.
[7] Han, J. W., and Kamber, M., 2006, Data mining concepts and techniques: China Machine Press, China, 184-224.
[8] Held, M., and Karp, R. M., 1970, The traveling-salesman problem and minimum spanning trees: Operations Research, 18(6), 1138−1162.
[9] Jiang, H. L., and Zhao, Q. L., 2009, Machine learning methods: Publishing House of Electronics industry, China, 20−56.
[10] Jutten, C., and Herault, J., 1988, Independent Component Analysis versus PCA. Proceeding of European Signal Processing Conf, 287-314.
[11] Li, H. Q., Li, X. Y., and Tan, F. Q., et al. 2010, Lithology Identification of Conglomerate Reservoir Based on Decision Tree Method: Well Logging Technology, 34(1), 16-21.
[12] Li, X. Y., 2011, Methods and Applications of Data Mining in the Reservoir Evaluation: PhD Thesis, University of Petroleum, Beijing.
[13] Li, X. Y., and Li, H. Q., 2013, A new method of identification of complex lithologies and reservoirs: task-driven data mining: Journal of Petroleum Science and Engineering, 109, 241-249.
[14] Liaqat Ali., and Sandip Bordoloi., et al. 2008,Modeling permeability in tight gas sands using intelligent and innovative data mining techniques. SPE Annual Technical Conference and Exhibition, 21−24.
[15] Liu, J., Li, Z. C., and Wang, Z., 2011, Quantitative identification of microfacies based on ICA,PCA and SVM: Well Logging Technology, 35(3), 262−265.
[16] Qin, F., Ren, S. L., and Cheng, Z, K., et al. 2007, Bayes classification model based on ICA: Computer Engineering and Design, 28(20), 4873−4877.
[17] Quinlan, J. R., 1986, Induction of decision trees: Machine learning, 1(1), 81−106.
[18] Shi, N., and Li, H. Q., and Luo, W. P., 2013, Lithology identification of reservoir containing anhydrite based on independent component analysis and Naive Bayes algorithm: Journal of Xi'an Shiyou University (Natural Science Edition), 28(5), 39−42.
[19] Yang, F. S., and Hong, B., 2006, Independent component analysis principles and applications: Tsinghua University Press, China, 91−111.
[20] Yong, S. H., and Zhang, C. M., 2006, Well logging data processing and integrated interpretation: China University of Petroleum Press, China, 533−566.
[21] Zhong, Y. H., and Li, R., 2009, Application of Principal Component Analysis and Least Square Support Vector Machine to Lithology Identification: Well Logging Technology, 33(5), 425−429.
[1] 孙文杰, 李宁, 武宏亮, 王克文, 张宫. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司