微地震监测,震源定位,弹性波,干涉成像,逆时成像," /> 微地震定位的加权弹性波干涉成像法
APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 221-234    DOI: 10.1007/s11770-015-0479-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
微地震定位的加权弹性波干涉成像法
李磊1,2,陈浩1,王秀明1
1. 中国科学院声学研究所,北京 100190
2. 中国科学院大学,北京 100049
Weighted-elastic-wave interferometric imaging of microseismic source location
Li Lei1,2, Chen Hao1, and Wang Xiu-Ming1
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
 全文: PDF (2402 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 震源定位是微地震监测关键技术之一。本文提出用于微地震定位的弹性波和加权弹性波(WEW)干涉成像方法。该方法在保证定位精度的同时,还可避免震源假象。通过各向同性水平层状介质模型的数值试验,初步表明该方法可适应低信噪比微震信号、速度随机扰动、较稀疏的检波器分布等情况,并在速度模型存在一定的系统误差时也仍保持较高的定位精度。由于干涉成像方法不需要进行初至拾取,定位效率相对传统走时方法也得到了提高。采用二维断层模型试算,表明方法还能实现多震源定位,且比逆时成像有更高的定位精度。
服务
把本文推荐给朋友 微地震监测|震源定位|弹性波|干涉成像|逆时成像

”几篇好文章,特向您推荐。请点击下面的网址:" name=neirong>
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李磊
陈浩
王秀明
关键词font-family: 宋体   mso-ascii-font-family: 'Times New Roman'   mso-bidi-font-family: 'Times New Roman'   mso-font-kerning: 1.0pt   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   微地震监测')" href="#">mso-bidi-language: AR-SA">微地震监测   震源定位   弹性波   干涉color: black   font-family: 宋体   mso-ascii-font-family: Tahoma   mso-bidi-font-family: Tahoma   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   mso-bidi-language: AR-SA   成像mso-hansi-font-family: Tahoma">成像font-family: 宋体   mso-ascii-font-family: 'Times New Roman'   mso-bidi-font-family: 'Times New Roman'   mso-font-kerning: 1.0pt   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   ')" href="#">mso-bidi-language: AR-SA">   逆时成像     
Abstract: Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted-elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with low-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.
Key wordsMicroseismic monitoring   seismic source location   elastic wave   interferometric imaging   time-reverse imaging   
收稿日期: 2014-10-28;
基金资助:

本研究由国家重大科研装备研制项目“深部资源探测核心装备研发”(编号:ZDYZ2012-1)和国家自然科学基金(编号:11374322)资助。

引用本文:   
李磊,陈浩,王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
Li Lei,Chen Hao,Wang Xiu-Ming. Weighted-elastic-wave interferometric imaging of microseismic source location[J]. APPLIED GEOPHYSICS, 2015, 12(2): 221-234.
 
[1] Anikiev, D., Valenta, J., Staněk, F., and Eisner, L., 2014, Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing: Geophysical Journal International, 198(1), 249−258.
[2] Artman, B., Podladtchikov, I., and Witten, B., 2010, Source location using time-reverse imaging: Geophysical Prospecting, 58, 861−873.
[3] Bardainne, T., Gaucher, E., Magnitude, and Cerda, F., 2009, Comparison of picking-based and waveform-based location methods of microseismic events: Application to a fracturing job: 79th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1547−1551.
[4] Burch, D. N., Daniels, J., Gillard, M., Underhill, W., Exler, V. A., Favoretti, L., Le Calvez, J., Lecerf, B., Potapenko, D., and Maschio, L., 2009, Live hydraulic fracture monitoring and diversion: Oilfield Review, 21(3), 18−31.
[5] Chambers, K., Dando, B. D. E., Jones, G. A., Velasco, R., and Wilson, S. A., 2014, Moment tensor migration imaging: Geophysical Prospecting, 62(4), 879−896.
[6] Claerbout, J. F., 1968, Synthesis of a layered medium from its acoustic transmission response: Geophysics, 33(2), 264−269.
[7] Das, I., and Zoback, M., 2013, Long-period, long-duration seismic events during hydraulic stimulation of shale and tight-gas reservoirs - part 1: Waveform characteristics: Geophysics, 78(6), KS97−KS108.
[8] Dong, L. G., Ma, Z. T., Cao, J. Z., Wang, H. Z., Geng, J. H., Lei, B., and Xu, S. Y., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics (in Chinese), 43(3), 411−419.
[9] Drew, J. E., Leslie, H. D., Armstrong, P. N., and Michard, G., 2005, Automated microseismic event detection and location by continuous spatial mapping: The 81st SPEAnnual Technical Conference and Exhibition, SPE Paper 95513.
[10] Drew, J. E., White, R. S., Tilmann, F., and Tarasewicz, J., 2013, Coalescence microseismic mapping: Geophysical Journal International, 195(3), 1773−1785.
[11] Duncan, P. M., and Eisner, L., 2010, Reservoir characterization using surface microseismic monitoring: Geophysics, 75(5), 75A139−175A146.
[12] Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., and Keller, W., 2010, Comparison of surface and borehole locations of induced seismicity: Geophysical Prospecting, 58(5), 809−820.
[13] Fink, M., 1999, Time-reversed acoustics: Scientific American, November, 91−97.
[14] Gajewski, D., and Tessmer, E., 2005, Reverse modelling for seismic event characterization: Geophysical Journal International, 163(1), 276−284.
[15] Gajewski, D., Anikiev, D., Kashtan, B., and Tessmer, E., 2007, Localization of seismic events by diffraction stacking: 77th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1287−1291.
[16] Geiger, L., 1912, Probability method for the determination of earthquake epicenters from arrival time only: Bull St Louis Univ, 8, 60−71.
[17] Gharti, H. N., Oye, V., Kühn, D., and Zhao, P., 2011, Simultaneous microearthquake location and moment-tensor estimation using time-reversal imaging: 81st Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1632−1637.
[18] Grandi, S., and Oates, S., 2009, Microseismic event location by cross-correlation migration of surface array data for permanent reservoir monitoring: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, X012.
[19] Grigoli, F., Cesca, S., Vassallo, M., and Dahm, T., 2013, Automated seismic event location by travel‐time stacking: An application to mining induced seismicity: Seismological Research Letters, 84(4), 666−677.
[20] Grigoli, F., Cesca, S., Amoroso, O., Emolo, A., Zollo, A., and Dahm, T., 2014, Automated seismic event location by waveform coherence analysis: Geophysical Journal International, 196(3), 1742−1753.
[21] Haldorsen, J. B. U., Milenkovic, M., Farmani, M. B., Brooks, N., and Crowell, C., 2012, Locating microseismic events using migration-based deconvolution: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1−5.
[22] Haldorsen, J. B. U., Brooks, N. J., and Milenkovic, M., 2013, Locating microseismic sources using migration-based deconvolution: Geophysics, 78(5), KS73−KS84.
[23] Jupe, A., Cowles, J., and Jones, R., 1998, Microseismic monitoring:Listen and see the reservoir: World Oil, 219(12), 171−174.
[24] Kao, H., and Shan, S. J., 2004, The source-scanning algorithm: Mapping the distribution of seismic sources in time and space: Geophysical Journal International, 157(2), 589−594.
[25] Kao, H., and Shan, S. J., 2007, Rapid identification of earthquake rupture plane using source-scanning algorithm: Geophysical Journal International, 168(3), 1011−1020.
[26] Li, J. L., Zhang, H. J., Rodi, W. L., and Toksoz, M. N., 2013, Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths: Geophysical Journal International, 195(3), 1917−1931.
[27] Li, Z. C., Sheng, G. C., Wang, W. B., Cui, Q. H., and Zhou, D. S., 2014, Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components: Oil Geophysical Prospecting, 49(4), 661−666, 671.
[28] Liang, B., and Zhu, G. S., 2004, Microseismic monitoring in oil and gas field exploration and development: Petroleum Industry Press, Beijing.
[29] Maxwell, S. C., 2010a, Microseimic: Growth born from success: The Leading Edge, 29, 338-343.
[30] Maxwell, S. C., Rutledge, J., Jones, R., and Fehler, M., 2010b, Petroleum reservoir characterization using downhole microseismic monitoring: Geophysics, 75(5), 75A129−175A137.
[31] McMechan, G. A., 1982, Determination of source parameters by wavefield extrapolation: Geophysical Journal International, 71(4), 613−628.
[32] McMechan, G. A., H.Luetgert, J., and Mooney, W. D., 1985, Imaging of earthquake sources in long valley caldera,california,1983: Bulletin of the Seismological Society of Ameirca, 75, 1005−1020.
[33] Miao, H. X., Jiang, F. X., Song, X. J., Song, J. Y., Yang, S. H., and Jiao, J. R., 2012a, Automatically positioning microseismic sources in mining by the stereo tomographic method using full wavefields: Applied Geophysics, 9(2), 168−176.
[34] Miao, H. X., Jiang, F. X., Song, X. J., Yang, S. H., and Jiao, J. R., 2012b, Tomographic inversion for microseismic source function and parameters in mining: Applied Geophysics, 9(3), 341−348.
[35] Mueller, M., 2013, Meeting the challenge of uncertainty in surface microseismic monitoring: First Break, 31(7), 89−95.
[36] Schuster, G. T., 2001, Theory of daylight/interferometric imaging:Tutorial: 63rd Conference & Technical Exhibition, EAGE, Expanded Abstracts, A32.
[37] Schuster, G. T., 2009, Seismic interferometry: Cambridge University Press Cambridge, New York.
[38] Schuster, G. T., Yu, J., and Sheng, J., 2004, Interferometric/daylight seismic imaging: Geophysical Journal International, 157(2), 838−852.
[39] Song, W. Q., Chen, Z. D., and Mao, Z. H., 2008, Hydro-racturing break microseismic monitoring technology: China University of Petroleum Press, Dongying.
[40] Tian, Y., and Chen, X. F., 2002, Review of seismic location study: Progress in Geophysics, 17(1), 147−155.
[41] Wang, C. L., Cheng, J. B., Yin, C., and Liu, H., 2013, Microseismic events location of surface and borehole observation with reverse-time focusing using interferometry technique: Chinese Journal of Geophysics (in Chinese), 56(9), 3184−3196.
[42] Wapenaar, K., Draganov, D., and Snieder, R., 2010a, Tutorial on seismic interferometry:Part 1 — basic principles and applications: Geophysics, 75(5), 75A195−175A209.
[43] Wapenaar, K., Slob, E., and Snieder, R., 2010b, Tutorial on seismic interferometry: Part 2-underlying theory and new advances: Geophysics, 75(5), 75A211−275A227.
[44] Xiao, X., Luo, Y., Fu, Q., Jervis, M., Dasgupta, S., and Kelamis, P., 2009, Locate microseismicity by seismic interferometry: EAGE Passive Seismic Workshop, Extended Abstract, A22.
[45] Yang, R. Z., Zhao, Z. G., Peng, W. J., Gu, Y. B., Wang, Z. G., and Zhuang, X. Q., 2013, Integrated application of 3d seismic and microseismic data in the development of tight gas reservoirs: Applied Geophysics, 10(2), 157−169.
[46] Yang, W. D., Jin, X., Li, S. Y., and Ma, Q., 2005, Study of seismic location methods: Earthquake Engineering and Engineering Vibration, 25(1), 14−20.
[47] Yilmaz, Ö., 2001, Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data: Society of Exploration Geophysicists.
[48] Zhang, S., Liu, Q. L., Zhao, Q., and Jiang, Y. D., 2002, Application of microseismic monitoring technology in development of oil field: Geophysical Prospecting for Petroleum (in Chinese), 41(2), 226−231.
[49] Zhebel, O., and Eisner, L., 2012, Simultaneous microseismic event localization and source mechanism determination: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1−5.
[50] Zhebel, O., Gajewski, D., and Vanelle, C., 2010, Localization of seismic events in 3d media by diffraction stacking: 80th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 2181−2185.
[1] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[2] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[3] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[4] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
[5] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[6] 段玉婷, 胡天跃, 姚逢昌, 张研. 基于精细积分法的三维弹性波数值模拟[J]. 应用地球物理, 2013, 10(1): 71-78.
[7] 秦臻, 卢明辉, 郑晓东, 姚姚, 张才, 宋建勇. 弹性波正演模拟中改进的非分裂式PML实现方法[J]. 应用地球物理, 2009, 6(2): 113-121.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司