APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 35-46    DOI: 10.1007/s11770-014-00476-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于矢量有限元法的三维张量CSAMT正演模拟
胡英才1,李桐林1,范翠松2,王大勇3,李建平4
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中国地质调查局天津地调中心,天津 300170
3. 中国地质科学院地球物理地球化学勘查研究所,廊坊 065000
4 山东科技大学地质科学与工程学院,青岛 266590
Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method
Hu Ying-Cai1, Li Tong-Lin1, Fan Cui-Song2, Wang Da-Yong3, and Li Jian-Ping4
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Tianjing Center, China Geological Survey, Tianjing 300170, China.
3. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China.
4. College of Geosciences and Technology, ShanDong University of Science and Technology, Qingdao 266590, China.
 全文: PDF (1222 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 标量CSAMT只适合一维及测量方向与构造方向垂直的二维情况,对于复杂的三维地电结构,CSAMT需采用张量测量。本文试图采用矢量有限元法实现三维张量CSAMT的正演模拟。为了验证算法的正确性,本文在层状介质中计算了三维CSAMT远区的电场,磁场及阻抗张量,并且与层状介质中的理论解进行了比较,接着还模拟了均匀半空间中含有三维异常体的模型,并且分析了四个阻抗张量、视电阻率及阻抗相位的响应特征。得出如下结论:采用矢量有限元法来模拟三维张量CSAMT,其电磁场及阻抗张量的实虚部计算精度都比较高,并且该方法本身满足电场法向不连续,不用进行散度校正。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡英才
李桐林
范翠松
王大勇
李建平
关键词可控源音频大地电磁法   正演   阻抗张量   矢量有限元法     
Abstract: Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
Key wordsCSAMT   model   impedance tensor   VFEM   
收稿日期: 2014-08-14;
基金资助:

本研究由深部探测技术与实验研究专项SinoProbe-03-05和国家自然科学基金项目(编号:41104068)联合资助。

引用本文:   
胡英才,李桐林,范翠松等. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
Hu Ying-Cai,Li Tong-Lin,Fan Cui-Song et al. Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method[J]. APPLIED GEOPHYSICS, 2015, 12(1): 35-46.
 
[1] Boerner, D. E., Wright, J. A., Thurlow, J. G., and Reed, L. E., 1993, Tensor CSAMT studies at the Buchans Mine in central Newfoundland: Geophysics, 58(1), 12−19.
[2] Bromley, C., 1993, Tensor CSAMT study of the fault zone between Waikite and Te Kopia geothermal fields: Journal of Geomagnetism and Geoelectricity, 45(9), 887−896.
[3] Fan, C. S., 2013, Research on complex resistivity forward and invertion with finite element and its application: Doctor’s thesis, Jilin University.
[4] Hu, X. Y., Peng, R. H., Wu, G. J., Wang, G. J., Wang, W. P., Huo, G. P., and Han, B., 2012, Mineral Exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China: Geophysics, 78(3), B111−B119.
[5] Jin, J. M., 1998, Finite element method of electromagnetic field: Xi’an Electronic University Press, 164−200.
[6] Li, X. B., Pedersen, and L. B., 1991, Controlled Source Tensor Magnetotellurics: Geophysics, 56(9), 1456−1461.
[7] Lin, C. H., Tan, H. D., and Tong, T., 2009, Three-dimensional conjugate gradient inversion of magnetotelluric full information data: Applied Geophysics, 8(1), 1−10.
[8] Liu, C. S., Ren, Z. Y., Tang, J. T., and Yan, Y., 2008, Three-dimensional magnetotellurics modeling using edge-based finite-element unstructured meshes: Applied Geophysics, 3, 170−180.
[9] Meng, Q. K., Lin, P. R., and Xu, B. L., 2013, Study of one-dimensional numerical simulation of tensor CSAMT: Computing Techniques for Geophysical and Geochemical Exploration, 35(4), 435−441.
[10] Mukherjee, S., and Everett, M. E., 2011, 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities: Geophysics, 76(4), F215−F226.
[11] Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., and Son, J. S., 2007, 3D magnetotelluric modeling including surface topography: Geophysics, 55, 277−287.
[12] Silva, N. V., Morgan, J. V., MacGregor, L., and Warner, M., 2012, A finite element multifrontal method for 3D CSEM modeling in the frequency domain: Geophysics, 77(2), E101−E115.
[13] Wang, Y., 2008, A study of 3D high frequency magnetotellurics modeling by edge-based finite element method: Doctor’s thesis, Central South University, Hunan.
[14] Wang, S. M., Li, D. S., and Hu, H., 2013, Numerical modeling of magnetotelluric tensor in the context of 3D/3D formation: Chinese Journal of Geophysics (in Chinese), 56(5), 1745−1752.
[15] Wang, X. X., Di, Q. Y., and Xu, C. 2014, Characteristics of multiple sources and tensor measurement in CSAMT: Chinese Journal of Geophysics (in Chinese), 57(2), 651−661.
[16] Wannamaker, P. E., 1997a Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part I: Implications for structure of the western caldera: Geophysics, 62(2), 451−465.
[17] Wannamaker, P. E., 1997b, Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part II : Implications for CSAMT methodology: Geophysics, 62(2), 466−476.
[18] Wu, L. P., Shi, K. F., and Li, Y. H., 1996, Application of CSAMT to the search for ground water: Chinese Journal of Geophysics (in Chinese), 39(5), 712−717.
[19] Xu, S. Z., 1994, The finite-element method in Geophysics: Science Press, Beijing, 238−254.
[20] Tan, H. D., We, W. B., Deng, M., and J, S., 2004, General use formula in MT tensor impedance: Oil geophysical prospecting, 39(1), 113−116.
[21] Xu, Z. F., and Wu, X. P., 2010, Controlled source eletromagnetic 3-D modeling in frequency domain by finite element method: Chinese Journal of Geophysics (in Chinese), 53(8), 1931−1939.
[22] Yu, C. M., 1998, The application of CSAMT method in looking for hidden gold mine: Chinese Journal of Geophysics (in Chinese), 41(1), 133−138.
[23] Zhang, J. F., Tang, J. T., Yu, Y., Wang, Y., Liu, C. S., and Xiao, X., 2009, Three dimensional controlled source eletromagnetic numerical simulation based on electric field vector equation using finite element method: Chinese Journal of Geophysics (in Chinese), 52(12), 3132−3141.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[3] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[4] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[5] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[6] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[7] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[8] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[9] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[10] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[11] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[12] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[13] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
[14] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[15] 白泽,谭茂金,张福莱. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司