APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 47-54    DOI: 10.1007/s11770-015-0467-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
F-X域复数经验模态分解去噪方法
马彦彦1,2,李国发1,2,王峣钧1,2,周辉1,2,张保江3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 中国石化石油勘探开发研究院,北京 100083
Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering
Ma Yan-Yan1,2, Li Guo-Fa1,2, Wang Yao-Jun1,2, Zhou Hui1,2, and Zhang Bao-Jiang3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China.
 全文: PDF (992 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 F-X域经验模态分解去噪方法在处理非稳态地震数据时存在两个局限,一是单纯剔除第一个固有模态分量将导致有效信号缺失及去噪能力偏弱问题,二是分解复信号时对实部和虚部分别分解存在分解数目不一致的风险。本文对上述两个方面进行了改进,提出了一种新的F-X域投影法复数经验模态分解预测滤波方法,首先采用基于空间投影的复数经验模态分解将F-X域地震数据直接分解为不同的复固有模态分量,然后再对这些分量分别进行F-X域预测滤波。合成记录及实际资料测试表明,本文的新方法能更好地衰减随机噪声,更有效地保持地震信号。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彦彦
李国发
王峣钧
周辉
张保江
关键词复数经验模态分解   复固有模态函数   F-X域预测滤波   随机噪声衰减     
Abstract: The frequency–space (f–x) empirical mode decomposition (EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function (IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition (CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs (CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
Key wordsComplex empirical mode decomposition   complex intrinsic mode functions   f–x predictive filtering   random noise attenuation   
收稿日期: 2014-02-24;
基金资助:

本研究由国家自然科学基金项目(编号:41174117)和国家重大科技项目(编号:2011ZX05031-001)共同资助。

引用本文:   
马彦彦,李国发,王峣钧等. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
Ma Yan-Yan,Li Guo-Fa,Wang Yao-Jun et al. Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering[J]. APPLIED GEOPHYSICS, 2015, 12(1): 47-54.
 
[1] Abma, R., and Claerbout, J., 1995, Lateral prediction for noise attenuation by t−x and f−x techniques: Geophysics, 60(6), 1887-1896.
[2] Battista, B. M., Knapp, C., McGee, T., and Goebel, V., 2007, Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data: Geophysics, 72(2), 29-37.
[3] Bekara, M., and van der Baan, M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), 89-98.
[4] Canales, L. L., 1984, Random noise reduction: 54th Annual International Meeting, SEG, Expanded Abstracts, 525-527.
[5] Gulunay, N., 1986, FXDECON and complex Wiener prediction filter: 56th Annual International Meeting, SEG, Expanded Abstracts, 279-281.
[6] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H., 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995.
[7] Ioup, J. W., and Ioup, G. E., 1998, Noise removal and compression using a wavelet transform: 68th Annual International Meeting, SEG, Expanded Abstracts, 1076-1079.
[8] Rilling, G., Flandrin, P., Goncalves, P., and Lilly, J. M., 2007, Bivariate Empirical Mode Decomposition: IEEE Signal Processing Letters, 14(12), 936-939.
[9] Sacchi, M. D., and Kuehl, H., 2001, ARMA formulation of FX prediction error filters and projection filters: Journal of Seismic Exploration, 9(3), 185-197.
[10] Soubaras, R., 1994, Signal-preserving random noise attenuation by the f-x projection: 64th Annual International Meeting, SEG, Expanded Abstracts, 1576-1579.
[11] Trickett, S. R., 2003, F-xy eigenimage noise suppression: Geophysics, 68(2), 751-759.
[12] Wang, D. L., Tong, Z. F., Tang, C., and Zhu, H., 2010, An iterative curvelet thresholding algorithm for seismic random noise attenuation: Applied Geophysics, 7(4), 315-324.
[13] Yuan, S. Y., and Wang, S. X., 2011, A local f-x Cadzow method for noise reduction of seismic data obtained in complex formations: Petroleum Science, 8(3), 269-277.
[1] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[2] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[3] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司